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Criticality Evasion
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obstacles

possible

evasion option

Evaluate safety of 
each possible 
evasion option

Pursue the safest 
option/path

Must be fast for it 
to be online

Uncertainty 
adds to these 
challenges



Criticality Evasion Under Uncertainties
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Evaluate safety of 
each possible 
evasion option

Pursue the safest 
option/path

Must be fast for it 
to be online

Uncertainty 
adds to these 
challenges



Traditional Methods of Criticality Evasion
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Using reachable 
sets to analyze 
safety of each 
option

Reachable Sets: Over approximation of all possible behaviors



Traditional Methods of Criticality Evasion
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Using reachable 
sets to analyze 
safety of each 
option

Uncertainties have 
its own impact

Computing reachable sets with 
uncertainties is expensive

Infeasible to be performed online for 
criticality evasion



Reachable Sets
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ሶ𝒙 = 𝑨 𝒙

𝑥0



Reachable Sets
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𝑥0
𝑥1

ሶ𝒙 = 𝑨 𝒙

𝑥1 = 𝑒𝐴×1 ⋅ 𝑥0



Reachable Sets
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𝑥0
𝑥1

ሶ𝒙 = 𝑨 𝒙

𝑥2 = 𝑒𝐴×2 ⋅ 𝑥0

𝑥2



Reachable Sets
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𝑥0
𝑥1

ሶ𝒙 = 𝑨 𝒙

𝑥𝑡 = 𝑒𝐴×𝑡 ⋅ 𝑥0

𝑥2

𝑥𝑡



Reachable Sets
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𝑥0
𝑥1

ሶ𝒙 = 𝑨 𝒙

𝑥𝑡 = 𝑒𝐴×𝑡 ⋅ 𝑥0

𝑥2

𝑥𝑡What if now 𝐴 has uncertainties?

I.e., ሶ𝑥 = 𝐴 + Λ  𝑥, where Λ is an 
interval matrix

Computing 𝒆 𝑨+𝚲 𝒕 is 
computationally expensive 
(if not impossible)



Main Idea for Criticality Evasion
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Main Idea:

• Quantify the 
effect of 
uncertainty 
without 
computing 
reachable sets

• Using 
Perturbation 
Theory

Option 1: 𝒄𝟏 
Option 2: 𝒄𝟐 

Option 3: 𝒄𝟑 

Measure of impact 
of uncertainty

Intuitively, 𝒄𝟏 
computes the effect of 

uncertainty on that 
path. Higher the value, 
the more unsafe it is.



Main Idea for Criticality Evasion
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Option 1: 𝒄𝟏 
Option 2: 𝒄𝟐 

Option 3: 𝒄𝟑 

Measure of impact 
of uncertainty

Pursue the option 
with minimum 
impact

Pursue the option 
with min{𝑐1, 𝑐2, 𝑐3}



Modeling Options with Uncertainties
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ሶ𝑥 = 𝐴𝑖 + Λi  𝑥

System 
states

Nominal behavior 
(without 

uncertainties) of 
the robot 

pertaining to 
𝑜𝑝𝑡𝑖𝑜𝑛𝑖

Impact of 
uncertainties

Model 𝑂𝑝𝑡𝑖𝑜𝑛𝑖  as:
ሶ𝑥 = 𝐴1 + Λ1  𝑥

ሶ𝑥 = 𝐴2 + Λ2  𝑥

ሶ𝑥 = 𝐴3 + Λ3  𝑥

Intuitively, 𝚲𝒊 models how the 
behavior of the robot is impacted by 
the presence of the uncertainties.

Example: How the behavior of the robot 
changes if there is an oil spill on the floor, i.e., 
change in coefficient of friction that impacts 
the navigation of the robot.



Compute Criticality
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ሶ𝑥 = 𝐴𝑖 + Λi  𝑥

ሶ𝑥 = 𝐴1 + Λ1  𝑥

ሶ𝑥 = 𝐴2 + Λ2  𝑥

ሶ𝑥 = 𝐴3 + Λ3  𝑥

Compute Criticality

𝜙(𝐴𝑖,Λ𝑖) 𝑡 = 𝑐𝑖

Bounded time-horizon

Option 1: 𝒄𝟏 

Option 2: 𝒄𝟐 

Option 3: 𝒄𝟑 

We propose 3 methods to compute 
𝝓(𝑨,𝚲)(𝒕) using Perturbation Theory



Method I: Compute 𝜙(𝐴,Λ)(𝑡)

• Using 𝑝-approximation

• 𝑝𝑛−1 𝑥 = σ𝑘=0
𝑛−1 𝑥𝑘

𝑘!

• Derive an upper bound of 𝜙 𝐴,Λ 𝑡
• Using 𝑝-approximation of 𝐴

2

• Intuitively,
• 𝜙 𝐴,Λ 𝑡 =

• Referred as Kagstrom1

15

Results extended from B. Kagstrom, “Bounds 

and perturbation bounds for the matrix exponen- 

tial,” BIT Numerical Mathematics, vol. 17, no. 

1, pp. 39–57, 1977

Compute 𝒑-approximation 
of 2-norm of 𝑨

Exponent of a combination of 𝒑-
approximation of 𝚲 & A and time 𝒕 



Method II: Compute 𝜙(𝐴,Λ)(𝑡)

• Using Condition Number
• Condition number of matrix 𝑀: 𝐾 𝑀 = 𝑀 ⋅ 𝑀−1

• Jordan Decomposition of 𝐴
• 𝑆𝐽𝑆−1, and 𝐷 is diagonal matrix, s.t.,

• 𝐷−1𝐽𝐷 ≤ 𝜖

• Specifically,
• 𝜙 𝐴,Λ 𝑡 =

• Referred as Kagstrom2
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Results extended from B. Kagstrom, “Bounds 

and perturbation bounds for the matrix exponen- 

tial,” BIT Numerical Mathematics, vol. 17, no. 

1, pp. 39–57, 1977

Compute condition number 
of 𝑨

Exponent of a combination of condition 
numbers of 𝚲 & A and time 𝒕 



Method III: Compute 𝜙(𝐴,Λ)(𝑡)

• Using Eigen Values
• 𝛼(𝑀) is the spectral abscissa of matrix 𝑀

• Specifically,
• 𝜙 𝐴,Λ 𝑡 =

• Referred as Loan
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Results extended from C. V. Loan, “The sensitivity 

of the matrix exponential,” SIAM Journal

on Numerical Analysis, vol. 14, no. 6, pp. 971–981, 

1977.

𝒕 times 2-norm of 𝚲
Exponent of a combination of (condition 

number of 𝑨, 2-norm of 𝚲) and time 𝒕 



Comparison: Methods I, II, & III
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Method I Method II Method III

Open Question: The best-performing method for a given system remains unknown — 
must be identified empirically.

Apply it for systems 
where computing 𝑝-

approximation and 2-
norm of 𝐴 & Λ is 

efficient

Apply it for systems 
where computing 

condition number and 
Jordan Decomposition 

of 𝐴 is efficient

Apply it for systems 
where computing 

spectral radius of 𝐴 is 
efficient

For all the three methods, computing 2-norm of Λ is required



Overall Approach

• For each 𝑂𝑝𝑡𝑖𝑜𝑛𝑖:
• Compute criticality 𝑐𝑖 = 𝜙 𝐴𝑖,Λ𝑖

𝑡 , which quantifies the impact of the uncertainty
• Using the tightest of the three available upper bounds (Kagstrom1, Kagstrom2, Loan)

• Once we have computed all the criticality factors {𝑐1, 𝑐2, ⋯ , 𝑐𝑛}, we sort the 
navigation choices in increasing order of these values.

• We then verify the safety of the navigation choices in this order using 
reachability analysis

• Pursue the first encountered safest option
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Experiments

• Benchmarks. Linear dynamics models from ARCH workshop suite
• Dimensions: 2–10; Perturbations: 2–4 entries in system matrix; Time step: Up to 

20

• All three methods are extremely efficient, even for high-dimensional systems (10).

• Took less than 0.5 seconds.

• Loan performed the best in all cases, with a few a joint winners

• Stress-test (t = 50–70): Kagstrom1/2 bounds grew exponentially (≈50×→500×), 
while Loan grew near-linearly (≈25×→40×), yielding significantly tighter bounds at 
higher times.

• This efficiency makes them particularly suitable for real-time decision-making on 
prioritizing navigation choices in uncertain environments

20



Conclusion & Future Work

• Safety-critical navigation requires rapid decisions, but traditional 
verification is often slow.

• We proposed an efficient ranking method that prioritizes navigation 
choices by sensitivity to uncertainty.

• Our method achieves sub-0.5s performance even on large-scale 
benchmarks.

• Future work: extend to reachable set computation and structure-aware 
reachability (that goes beyond norms of 𝐴 and Λ).
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Thank You
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