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Introduction:  Plant-Control Closed-Loop Systems 

A dynamical system like a physical process

(Plant)

An autonomous car
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Introduction:  Plant-Control Closed-Loop Systems 

An autonomous car

Speed sensor measures
 the car's actual speed
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Introduction:  Plant-Control Closed-Loop Systems 

An autonomous carCruise controller of the car

Stabilizing Feedback Controller
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Speed sensor measures
 the car's actual speed



Introduction:  Plant-Control Closed-Loop Systems 

An autonomous car

Speed sensor measures
 the car's actual speed

Cruise controller of the car

Control Input:
Adjusts the throttle force 

Compares actual speed 
with the reference speed
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Introduction:  Plant-Control Closed-Loop Systems 

Plant
Feedback 
Controller

Control  input

Plant  output

Plant-Control  
Closed-Loop  

System

6



Introduction:  Plant-Control Closed-Loop Systems 

Plant  output

Plant-Control  
Closed-Loop  

System

• Discrete-time controller executed as a software control task in the embedded processor.

• Control Task: periodic real-time task, should complete execution before its deadline.

• This is the task’s  hard real-time requirement  to satisfy.
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Control  input

Plant
Feedback 
Controller



Introduction: Scheduling Control Task in Hard Real-Time Setting

0 ms 3 ms 6 ms 9 ms 12 ms 15 ms

1 1 1 1 11

Deadline = 3ms Deadline = 6ms …  …   … Deadline = 15 ms

Period = 3 ms

All
Deadline hits
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1 → hit



0 ms 3 ms 6 ms 9 ms 12 ms 15 ms

Execution skip
  or

Deadline miss

Execution skip  
or

Deadline miss
1 1 0 1 10

(4, 6)-firm weakly hard constraint 

Deadline hit-miss pattern:   Control Execution Sequence (CES) e.g., 110101 
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0 → miss

Introduction:  Scheduling Control Task in Weakly Hard Setting



Scheduling Multiple Weakly Hard Control Tasks in a Processor

Uniprocessor system

110 10 0

1 01 1

1 1 0 11

…………..…       ………………        ……………     ………………    …………..

n weakly hard control tasks in a processor corresponding to the n controllers 
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Motivation of the Work

Uniprocessor system

110 10 0

1 01 1

1 1 0 11

…………..…       ………………        ……………     ………………    …………..

Does such a schedule ensure the underlying stability of the control systems ?
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0

1 1 10

T1

T2

Tn

Does such a schedule ensure the underlying safety of the control systems ?



Limitations of Existing Methods and Contributions of this Work
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Limitations:

❑ In the context of schedulability: Existing methods 
focus either on stability 1,2 or safety 3,4.

❑ Blend: (stability, safety, schedulability) is missing.

❑ Schedule ensures safety only over a bounded 
time horizon 3,4.

1. A structured methodology for pattern based adaptive scheduling in embedded 
control,  S. Ghosh et al.,  ACM-TECS 2017.

2. Closing the gap between stability and schedulability: A new task model for cyber-
physical systems, Hoon Sung Chwa et al., RTAS 2018.

3. Statistical approach to efficient and deterministic schedule synthesis for cyber-
physical systems, Shengjie Xu et al., ATVA 2023.

4. Safety-aware flexible schedule synthesis for cyber-physical systems using weakly-hard 
constraints, Shengjie Xu et al., ASP-DAC 2023.
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❑ In the context of schedulability: Existing methods 
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❑ Blend: (stability, safety, schedulability) is missing.

❑ Schedule ensures safety only over a bounded 
time horizon 3,4.

1. A structured methodology for pattern based adaptive scheduling in embedded 
control,  S. Ghosh et al.,  ACM-TECS 2017.

2. Closing the gap between stability and schedulability: A new task model for cyber-
physical systems, Hoon Sung Chwa et al., RTAS 2018.

3. Statistical approach to efficient and deterministic schedule synthesis for cyber-
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4. Safety-aware flexible schedule synthesis for cyber-physical systems using weakly-hard 
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Contributions:

Addressing (stability, safety, schedulability) for 
the first time →  schedule ensures stability 
and safety over an unbounded time horizon.

Stepwise exploring the 3 aspects:

1.
• Ensuring exponential stability

2.
• Ensuring safety for infinite time length

3.
• Synthesizing safe and stable schedule



Step 1:  Ensuring Stability
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Ensuring  Stability
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Every 𝒍-length ratio of norm 𝒙  
decreases by damping ratio of 𝝐. 

       i.e.,
𝒙 𝒌+𝒍

𝒙 𝒌
< 𝝐

(𝒍, ∈)-exponential  stability criterion



Ensuring  Stability

Settling time  (S)
+

Reference value  (ξ)
+

Maximum disturbance 

allowed at input  (δ)
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Inputs

Every 𝒍-length ratio of norm 𝒙  
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Every 𝒍-length ratio of norm 𝒙  
decreases by damping ratio of 𝝐. 

       i.e.,
𝒙 𝒌+𝒍

𝒙 𝒌
< 𝝐

Inputs

Compute (l, ∈)-exponential stability criterion
𝑵 =

𝑺

𝒉
,

𝒍 =
𝑵

𝒇
,

𝝐 =
𝝃

𝝃 + 𝜹

𝟏
𝒇

h: sampling period
f : tuning parameter

(𝒍, ∈)-exponential  stability criterion



Ensuring  Stability

Settling time  (S)
+

Reference value  (ξ)
+

Maximum disturbance 

allowed at input  (δ)
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Every 𝒍-length ratio of norm 𝒙  
decreases by damping ratio of 𝝐. 

       i.e.,
𝒙 𝒌+𝒍

𝒙 𝒌
< 𝝐

Inputs

Compute (l, ∈)-exponential stability criterion

(𝒍, ∈)-exponential  stability criterion

Compute minimum control execution rate r

𝜷 =
𝒍𝒏

𝟏

𝝐

𝒍×𝒉
 , 

𝒓 =
𝟐 𝒍𝒏 𝜷 +𝒍𝒏 𝝌𝟎

𝒍𝒏 𝝌𝟎 −𝒍𝒏 𝝌𝟏
 

χ𝟎 
, χ𝟏 :  spectral radii of 

the open loop and closed 
loop  dynamics matrices



Ensuring  Stability

Settling time  (S)
+

Reference value  (ξ)
+

Maximum disturbance 

allowed at input  (δ)
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Every 𝒍-length ratio of norm 𝒙  
decreases by damping ratio of 𝝐. 

       i.e.,
𝒙 𝒌+𝒍

𝒙 𝒌
< 𝝐

Inputs

Compute (l, ∈)-exponential stability criterion

(𝒍, ∈)-exponential  stability criterion

Compute minimum control execution rate r

Compute stable (M, K)-firm constraint
𝑴 = 𝒓 × 𝒍  , 

K = 𝒍



Ensuring  Stability

Settling time  (S)
+

Reference value  (ξ)
+

Maximum disturbance 

allowed at input  (δ)
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Every 𝒍-length ratio of norm 𝒙  
decreases by damping ratio of 𝝐. 
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Ensuring  Stability

Settling time  (S)
+

Reference value  (ξ)
+

Maximum disturbance 

allowed at input  (δ)
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Every 𝒍-length ratio of norm 𝒙  
decreases by damping ratio of 𝝐. 

       i.e.,
𝒙 𝒌+𝒍

𝒙 𝒌
< 𝝐

Inputs

Compute (l, ∈)-exponential stability criterion

(𝒍, ∈)-exponential  stability criterion

Compute minimum control execution rate r

Compute stable (M, K)-firm constraint

Ensuring system’s exponential stability

𝒙 𝒌 → 𝟎System's state converges to  equilibrium 
point with exponential decay rate



SASO  Constraint

Compute (m, k)-firm SASO constraint

SASO: Scheduling-Affable Stability-Oriented

Stable 
(M, K)-firm constraint

m and k → small 
divisors of M and 

K respectively

➢  Scheduling affable:  SASO constraints speed up the scheduling process.

➢ SASO constraints enhance the control performance: 
      CESs following SASO constraints avoid scenarios of missing deadlines consecutively often. 
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Step 2:  Ensuring Safety
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Criterion for Safety
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Bounded deviation from ideal behavior or nominal trajectory



Criterion for Safety
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Bounded deviation from ideal behavior or nominal trajectory :

➢ Nominal trajectory (𝑵):  State evolution trajectory for all 
deadlines met, i.e., pattern ‘111...’ .

➢ CES-based trajectory (𝑪𝑷): State evolution trajectory for deadline 
hit-miss pattern (CES), e.g., 11010.

ideal behavior of 
the system

system’s 
behavior with 
deadline misses



Criterion for Safety
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Bounded Deviation:  The deviation must be bounded, i.e., 

𝒅ⅈ𝒔 𝑵, 𝑪𝒑 ≤ 𝒅𝒔𝒂𝒇ⅇ, where 𝑑𝑠𝑎𝑓ⅇ  is the safety bound.
Deviation of 𝑪𝑷 from N: 

𝒅ⅈ𝒔 𝑵, 𝑪𝒑  
 

(measured in terms of 
Euclidean distance)

DC motor speed control system



Ensuring Safety
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(m, k)-firm SASO  
constraint

Input



Ensuring Safety
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(m, k)-firm SASO  
constraint

Input

SASSO constraint = (m’, k) 

SASSO: Scheduling-Affable 
Stability-and-Safety-Oriented



Ensuring Safety
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(m, k)-firm SASO  
constraint

Input

SASSO constraint = (m’, k) 

SASSO: Scheduling-Affable 
Stability-and-Safety-Oriented

Deducing a safe CES p 𝒅ⅈ𝒔 𝑵, 𝑪𝒑 ≤ 𝒅𝒔𝒂𝒇ⅇ

satisfies safety criterion



Theoretical  Results  Established
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A safe CES p corresponding to a SASSO constraint ensures 
control safety over an unbounded time horizon.

1.
𝒅ⅈ𝒔 𝑵, 𝑪𝑷 → 𝟎 as 𝒕 → ∞
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A safe CES p corresponding to a SASSO constraint ensures 
control safety over an unbounded time horizon.

1.

Tub  =

There exists an upper bound Tub on the time horizon length for 

safety verification (i.e., checking 𝑑ⅈ𝑠 𝑁, 𝐶𝑝 ≤ 𝑑𝑠𝑎𝑓ⅇ).

2.

Theoretical  Results  Established
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A safe CES p corresponding to a SASSO constraint ensures 
control safety over an unbounded time horizon.

1.

There exists an upper bound Tub on the time horizon length for 

safety verification (i.e., checking 𝑑ⅈ𝑠 𝑁, 𝐶𝑝 ≤ 𝑑𝑠𝑎𝑓ⅇ).

2.

Exact time horizon length for safety verification is the settling 
time, from the time of application of an external disturbance.

3.

Theoretical  Results  Established



Step 3:  Schedulability Test 

  and Synthesizing Schedule
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Schedulability Test and Synthesizing Schedule

34

n SASSO 
constraints

+
n safe CESs

+ 
Sampling periods 
and WCETs of n 

tasks

SMT-Optimizer
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n SASSO 
constraints

+
n safe CESs

+ 
Sampling periods 
and WCETs of n 

tasks

SMT-Optimizer

❖  Feasibility related constraints              

❖  Response-time related constraints 
 
❖  Conflict-removing constraints
   
❖  Constraint for minimizing worst-case response time



Schedulability Test and Synthesizing Schedule
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n SASSO 
constraints

+
n safe CESs

+ 
Sampling periods 
and WCETs of n 

tasks

SMT-Optimizer

❖  Feasibility related constraints              

❖  Response-time related constraints 
 
❖  Conflict-removing constraints
   
❖  Constraint for minimizing worst-case response time

SAT

A feasible schedule



Schedulability Test and Synthesizing Schedule
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n SASSO 
constraints

+
n safe CESs

+ 
Sampling periods 
and WCETs of n 

tasks

SMT-Optimizer

❖  Feasibility related constraints              

❖  Response-time related constraints 
 
❖  Conflict-removing constraints
   
❖  Constraint for minimizing worst-case response time

SAT

A feasible schedule

UNSAT

Tasks not schedulable



Summary of the Proposed Method
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Control Design Parameter: 
    Settling Time

Set of  n SASO constraints

Control Safety Metric:

   Deviation between ideal 
   behavior and behavior 
   with deadline misses Set of  n safe CESs and SASSO constraints

Minimizing the Worst-Case   
    Response Time (WCRT)

Step 1:   Ensuring exponential stability of the system

Step 2:   Ensuring safety over infinite time horizon 

Step 3:    Synthesizing an SMT-based, safe and stable 
                   schedule with minimized WCRT



Evaluation
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Sl. No. Benchmark control systems considered from the automotive domain Order of the system

1 Resistor-capacitor network  (RC) 2

2 DC-motor speed control  (DC) 2

3 Vehicle dynamic control  (VDC) 2

4 Lane following Controller of an F1 tenth model car  (F1) 2

5 Trajectory tracking control  (TTC) 2

6 DC-servo control  (DCS) 2

7 Cruise control  (CC) 3

8 Adaptive cruise control  (ACC) 3

9 Suspension control  (SC) 4

10 Lane keeping system  (LK) 4

11 Vision-based lateral control  (LC) 5



Evaluation
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2 parameters

Number of plant-control systems 
and corresponding control tasks

Processor utilization



Evaluation
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2 parameters

Number of plant-control systems 
and corresponding control tasks

Processor utilization

Tasks 𝑻ⅈ  ⅈ=𝟏 𝒕𝒐 𝒏 : Ti  =  { (m’i , ki ), pi , ci , hi }

  (m’i , ki ) :   SASSO constraint

  pi             :   Safe CES 

  ci                    :   WCET of the control task

  hi                   :   Sampling period of the controller

Util. =  
𝒎′

ⅈ×𝒄ⅈ

𝒌ⅈ×𝒉ⅈ



Scalability Analysis

42

2 parameters

Number of plant-control systems 
and corresponding control tasks

Processor utilization

❖  Increase the number of tasks and job instances.

❖  Increase the processor utilization by increasing WCET.

❖  Aim:  Report a feasible schedule with
1. A fairly reasonable runtime overhead.
2.  Improved scope of schedulability.



Scalability Analysis
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No of control
tasks

No of jobs
scheduled

Range of processor utilization 
for which a schedule is obtained

Time range to synthesize a safe and 
stable schedule

5 300 0.7 – 0.82 0.08 – 0.126 s   (Less than 2s)

7 630 0.7 – 1.0  0.55 – 6.058 s   (Less than 7s)

9 14,490 0.7 – 0.97 0.07 – 3.556 s  (Less than 4s)

11 18,270 0.7 – 0.98 1.547 – 161.836 s  (Less than 3min)

13 20,790 0.7 – 0.97 16.167 – 400.053 s  (Less than 7min)

15 46,620 0.7 – 0.92 485.305 – 8517.031 s (Less than 2.5hr)



Scalability Analysis
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No of control
tasks

No of jobs
scheduled

Range of processor utilization 
for which a schedule is obtained

Time range to synthesize a safe and 
stable schedule

5 300 0.7 – 0.82 0.08 – 0.126 s  (Less than 2s)

7 630 0.7 – 1.0  0.55 – 6.058 s  (Less than 7s)

9 14,490 0.7 – 0.97 0.07 – 3.556 s (Less than 4s)

11 18,270 0.7 – 0.98 1.547 – 161.836 s (Less than 3min)

13 20,790 0.7 – 0.97 16.167 – 400.053 s (Less than 7min)

15 46,620 0.7 – 0.92 485.305 – 8517.031 s (Less than 2.5hr)

❑ For 15 tasks, schedules are synthesized within 7 min-38 min up to Util. < 0.85.
❑  For Util. > 0.85, we obtain schedules but with considering a time-out of 3 hrs. 



Comparison with the State-of-the-Art
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State-of-the-art methods:

1) PGS  (Pattern Guided Stable schedule)

-  Sumana Ghosh, Souradeep Dutta, Soumyajit Dey and Pallab Dasgupta. 2017. A Structured Methodology for Pattern Based 
Adaptive Scheduling in Embedded Control. ACM Transactions on Embedded Computing Systems (TECS) 16, 5s, 189:1–189:22.

2) DSHT (Deterministic verification of schedule constructed with Statistical Hypothesis Testing)

-  Shengjie Xu, Bineet Ghosh, Clara Hobbs, Enrico Fraccaroli, Parasara Sridhar Duggirala and Samarjit Chakraborty. 2023. Statistical 
approach to efficient and deterministic schedule synthesis for cyber-physical systems. In Proc. International Symposium on 
Automated Technology for Verification and Analysis (ATVA). Springer, 312–333.

3) SCS  (Safe Constraint Synthesis to generate safe schedule)

-  Shengjie Xu, Bineet Ghosh, Clara Hobbs, P. S. Thiagarajan and Samarjit Chakraborty. 2023. Safety-aware flexible schedule synthesis 
for cyber-physical systems using weakly-hard constraints. In Proc. Asia and South Pacific Design Automation Conference 
(ASP-DAC). 46–51.



Comparison with the State-of-the-Art
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Our method referred to as FMSS:  Formal Methods for synthesizing a Safe and Stable schedule

1.  PGS  (constructs a stable schedule)

Comparison with w.r.t.  metrics:

▪ Safety
▪ Scope of schedulability
▪ Runtime Overhead

2. DSHT, SCS  (construct a safe schedule)

Comparison with w.r.t.  metrics:

▪ Stability
▪ Runtime Overhead



Comparison with PGS
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Col.  1 Col.  2 Col.  3 Col.  4 Col.  5

No of control
tasks

Util. Time taken 
by FMSS

Time taken by PGS 
stable constraints

Time  taken by PGS
with SASO constraints

5 0.76 0.100 s 80.625 s 0.456 s

0.82 0.070 s 207.547 s 1.344 s

7 0.78 0.421 s 10.234 s 0.100 s

0.82 – 1.0 ✓  1 hr (timed out) X

9 0.70 0.030 s 26.219 s 0.077 s

0.72 – 0.97 ✓  1 hr (timed out) X

11 0.70 – 0.98 ✓  1 hr (timed out) X

13 0.70 – 0.92 ✓  1 hr (timed out) X

15 0.70 – 0.85 ✓  1 hr (timed out) X

2.  Comparing 
scope of 
schedulability

1.  Comparing 
runtime overhead

SASO 
constraints: 

part of FMSS

Considered 
here for fair 
comparison
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Col.  1 Col.  2 Col.  3 Col.  4 Col.  5

No of control
tasks

Util. Time taken 
by FMSS

Time taken by PGS 
stable constraints

Time  taken by PGS
with SASO constraints

5 0.76 0.100 s 80.625 s 0.456 s

0.82 0.070 s 207.547 s 1.344 s

7 0.78 0.421 s 10.234 s 0.100 s

0.82 – 1.0 ✓  1 hr (timed out) X

9 0.70 0.030 s 26.219 s 0.077 s

0.72 – 0.97 ✓  1 hr (timed out) X

11 0.70 – 0.98 ✓  1 hr (timed out) X

13 0.70 – 0.92 ✓  1 hr (timed out) X

15 0.70 – 0.85 ✓  1 hr (timed out) X

Suffers 
from time-out 
issues

Feasible schedule
obtained within 
reasonable time

Improved runtime 
overhead in FMSS



Comparison with PGS
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Col.  1 Col.  2 Col.  3 Col.  4 Col.  5

No of control
tasks

Util. Time taken 
by FMSS

Time taken by PGS 
stable constraints

Time  taken by PGS
with SASO constraints

5 0.76 0.100 s 80.625 s 0.456 s

0.82 0.070 s 207.547 s 1.344 s

7 0.78 0.421 s 10.234 s 0.100 s

0.82 – 1.0 ✓  1 hr (timed out) X

9 0.70 0.030 s 26.219 s 0.077 s

0.72 – 0.97 ✓  1 hr (timed out) X

11 0.70 – 0.98 ✓  1 hr (timed out) X

13 0.70 – 0.92 ✓  1 hr (timed out) X

15 0.70 – 0.85 ✓  1 hr (timed out) X

Tasks not 
schedulable

Feasible schedule
obtained

Improved scope  
of schedulability 

in FMSS



Comparison with PGS
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Violation of safety bound in PGS in F1-tenth model car system

Safety bound



Comparison with DSHT and SCS
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❖ We correlate the (𝑙, ∈)-exponential stability criterion with the settling time.

Settling time → (𝑙, ∈)-exponential stability criterion → 
stable constraint → SASSO constraint → safe CES.

❖ A shorter settling time signifies a stable and a more responsive system.



Comparison with DSHT and SCS
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Cruise control system:   (1, 5) is a safe constraint reported by SCS and DSHT

Settling time is 
 > 2.5 s (4s) in SCS, DSHT



Comparison with DSHT and SCS
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Cruise control system:   (3, 5) is a SASSO constraint, 11010 is a safe CES, reported by FMSS

Settling time is 
0.8s in FMSS

80% improvement 
in FMSS



Comparison with DSHT and SCS
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Suspension control system:   (2, 5) is safe constraint reported by DSHT and SCS

(4, 5) is a SASSO constraint, 11011 is a safe CES, reported by FMSS

Settling time: 
0.2s (FMSS)

Settling time: 
2.5s (DSHT, SCS)

92% improvement 
in FMSS



Comparison with DSHT and SCS
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Comparing the runtime overhead

No. of control tasks Time taken (FMSS) Time taken (DSHT) Time taken (SCS)

5 0.08 s 13.50 s 748.37 s   (12.47 min)

Runtime is quite high for a 
small task setup



Comparison with DSHT and SCS
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Comparing the runtime overhead

No. of control tasks Time taken (FMSS) Time taken (DSHT) Time taken (SCS)

5 0.08 s 13.50 s 748.37 s

DSHT and SCS: employ time-consuming iterative approaches, probabilistic methods, reachability analysis

An exponential time rise possible for a higher number of tasks in DSHT and SCS !!



Comparative Comments on Other Works
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Method in [1]:

➢ Constructs an SMT-based schedule.

➢ Ensures control safety in a weakly hard scenario.

➢ But the method is limited to medium-sized systems.

[1]: Anand Yeolekar, Ravindra Metta, and Samarjit Chakraborty. 2024. SMT-based Control Safety Property Checking in
Cyber-Physical Systems under Timing Uncertainties. In Proc. on VLSI Design and Embedded Systems (VLSID). 276–280.



Comparative Comments on Other Works
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Comparing the runtime overhead

Runtime and memory consumption 
is quite high for a small task setup

[1]: Anand Yeolekar, Ravindra Metta, and Samarjit Chakraborty. 2024. SMT-based Control Safety Property Checking in
Cyber-Physical Systems under Timing Uncertainties. In Proc. on VLSI Design and Embedded Systems (VLSID). 276–280.

No. of 
control tasks

Time taken 
(FMSS)

Time taken [1] Memory Consumed
(FMSS)

Memory Consumed [1]

4 0.04 s 40 s 20 MB 48 MB

SMT-based scheduling in FMSS is time- and 
compute-efficient:  pruned search space of the 

SMT-solver with SASO and SASSO constraints



Conclusion
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Contributions of this paper:

✓ Triplet (stability, safety, schedulability):  Explored for the first time in the literature.

✓ Stability and safety:  Ensured over an infinite horizon.

✓ Proposed scheduling approach:  Minimized WCRT offers improved scope of schedulability.

✓ Proposed SMT-based approach:  Time-efficient, hence increases scalability.

✓ Experimental comparison:  Proposed method outperforms the state-of-the-art methods.



Conclusion

60

Contributions of this paper:

✓ Triplet (stability, safety, schedulability):  Explored for the first time in the literature.

✓ Stability and safety:  Ensured over an infinite horizon.

✓ Proposed scheduling approach:  Minimized WCRT offers improved scope of schedulability.

✓ Proposed SMT-based approach:  Time-efficient, hence increases scalability.

✓ Experimental comparison:  Proposed method outperforms the state-of-the-art methods.

Future works:
▪ Stability and safety for scheduling in non-linear control systems.

▪ Dependencies in the task model while designing a safe and stable schedule.



THANK  YOU !
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