
A Formal Approach towards Safe and Stable Schedule Synthesis in Weakly Hard Control Systems

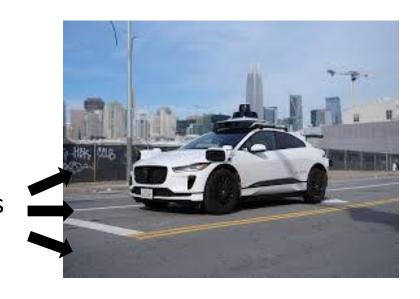
Authors: Debarpita Banerjee¹, Parasara Sridhar Duggirala², Bineet Ghosh³, Sumana Ghosh¹

EMSOFT 2025

Debarpita Banerjee, Sumana Ghosh Indian Statistical Institute, Kolkata, India {debarpita2023 r, sumana} @isical.ac.in

Parasara Sridhar Duggirala The University of North Carolina, Chapel Hill, USA psd@cs.unc.edu

³ Bineet Ghosh The University of Alabama, Tuscaloosa, USA bineet@ua.edu



An autonomous car

A dynamical system like a physical process (Plant)

Speed sensor measures the car's actual speed

An autonomous car

Cruise controller of the car

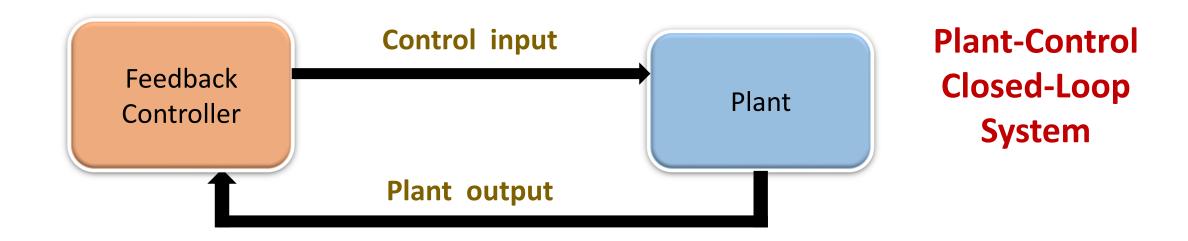
Speed sensor measures the car's actual speed

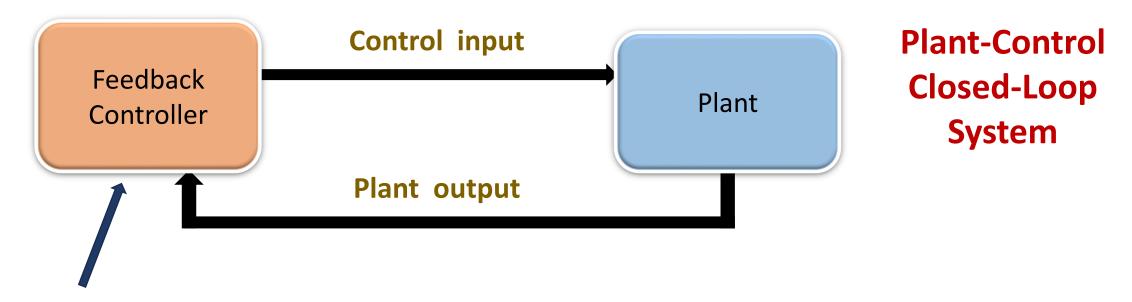
An autonomous car

Stabilizing Feedback Controller

Cruise controller of the car

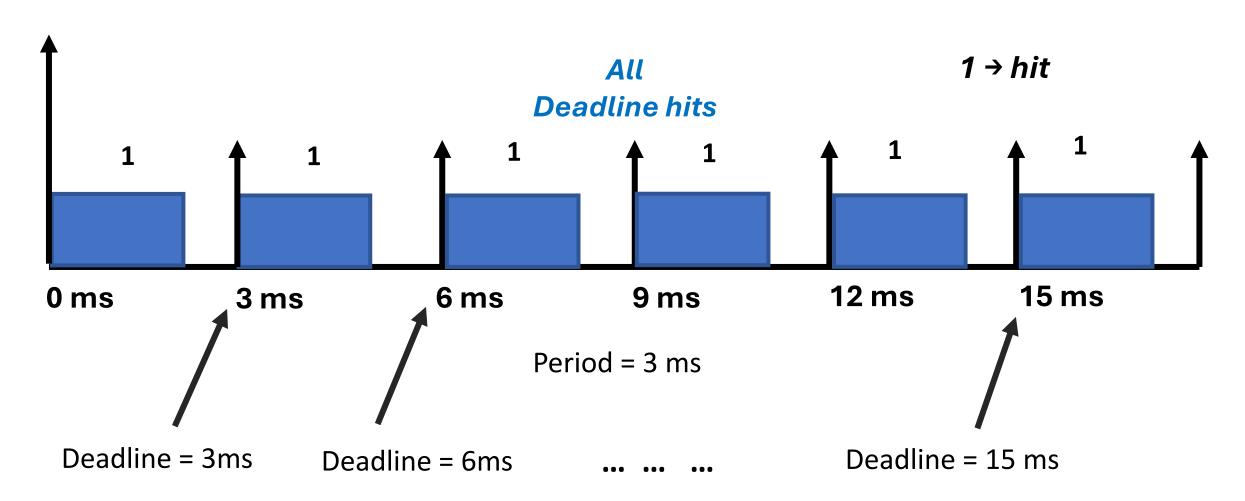
Compares actual speed with the reference speed


Speed sensor measures the car's actual speed



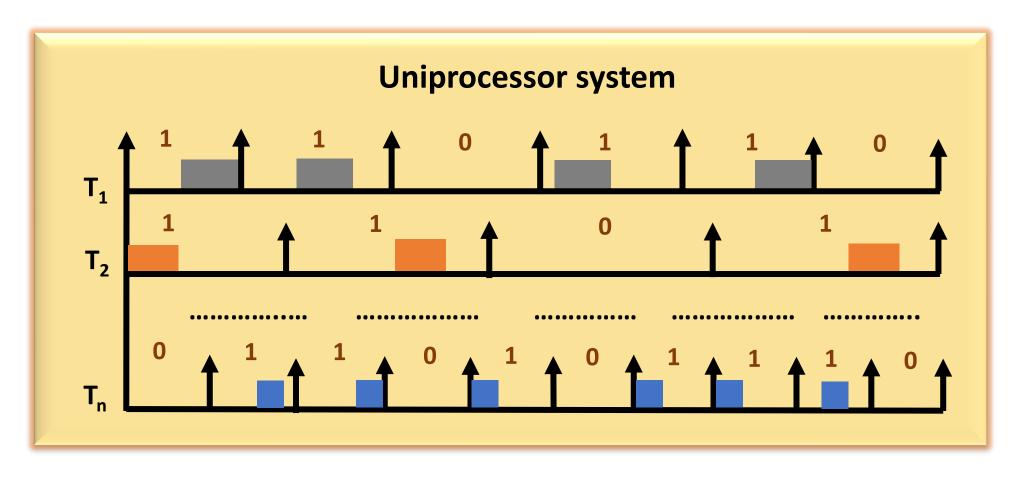
An autonomous car

Control Input:

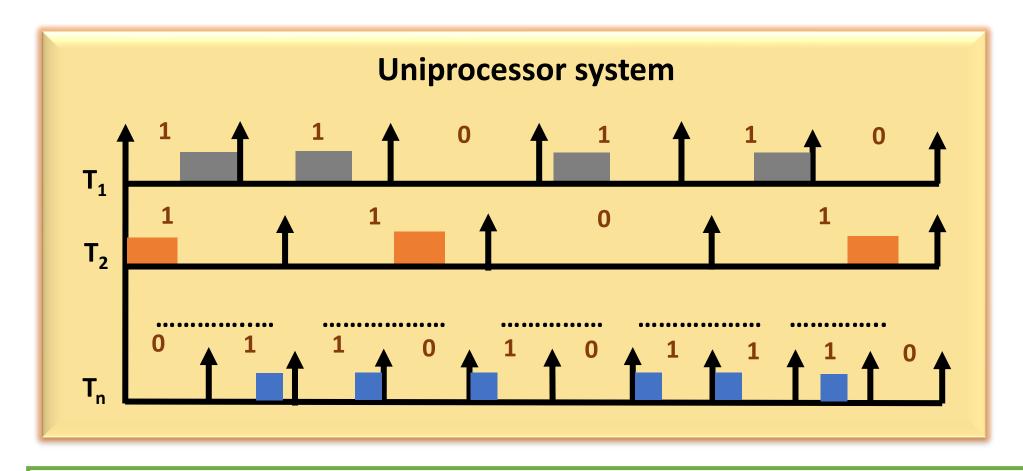

Adjusts the throttle force

- Discrete-time controller executed as a software control task in the embedded processor.
- Control Task: periodic real-time task, should complete execution before its deadline.
- This is the task's hard real-time requirement to satisfy.

Introduction: Scheduling Control Task in Hard Real-Time Setting


Introduction: Scheduling Control Task in Weakly Hard Setting

(4, 6)-firm weakly hard constraint


Deadline hit-miss pattern: Control Execution Sequence (CES) e.g., 110101

Scheduling Multiple Weakly Hard Control Tasks in a Processor

n weakly hard control tasks in a processor corresponding to the n controllers

Motivation of the Work

Does such a schedule ensure the underlying **stability** of the control systems?

Does such a schedule ensure the underlying *safety* of the control systems?

Limitations of Existing Methods and Contributions of this Work

Limitations:

- ☐ In the context of *schedulability*: Existing methods focus **either** on *stability* ^{1,2} **or** safety ^{3,4}.
- ☐ Blend: (stability, safety, schedulability) is **missing**.
- ☐ Schedule ensures safety only over a bounded time horizon ^{3,4}.
- 1. A structured methodology for pattern based adaptive scheduling in embedded control, S. Ghosh et al., ACM-TECS 2017.
- 2. Closing the gap between stability and schedulability: A new task model for cyber-physical systems, Hoon Sung Chwa et al., RTAS 2018.
- 3. Statistical approach to efficient and deterministic schedule synthesis for cyber-physical systems, Shengjie Xu et al., ATVA 2023.
- 4. Safety-aware flexible schedule synthesis for cyber-physical systems using weakly-hard constraints, Shengjie Xu et al., ASP-DAC 2023.

Limitations of Existing Methods and Contributions of this Work

Limitations:

- In the context of *schedulability*: Existing methods focus **either** on *stability* ^{1,2} **or** safety ^{3,4}.
- ☐ Blend: (stability, safety, schedulability) is **missing**.
- ☐ Schedule ensures safety only over a bounded time horizon ^{3,4}.
- 1. A structured methodology for pattern based adaptive scheduling in embedded control, S. Ghosh et al., ACM-TECS 2017.
- 2. Closing the gap between stability and schedulability: A new task model for cyber-physical systems, Hoon Sung Chwa et al., RTAS 2018.
- 3. Statistical approach to efficient and deterministic schedule synthesis for cyber-physical systems, Shengjie Xu et al., ATVA 2023.
- 4. Safety-aware flexible schedule synthesis for cyber-physical systems using weakly-hard constraints, Shengjie Xu et al., ASP-DAC 2023.

Contributions:

Addressing (stability, safety, schedulability) for the first time \rightarrow schedule ensures stability and safety over an unbounded time horizon.

Stepwise exploring the 3 aspects:

- Ensuring exponential stability
 - Ensuring safety for infinite time length
 - Synthesizing safe and stable schedule

Step 1: Ensuring Stability

(l, \in) -exponential stability criterion

i.e.,
$$\frac{\|x[k+l]\|}{\|x[k]\|} < \epsilon$$

Inputs

Settling time (S)

+

Reference value (ξ)

+

Maximum disturbance allowed at input (δ)

(l, \in) -exponential stability criterion

i.e.,
$$\frac{\|x[k+l]\|}{\|x[k]\|} < \epsilon$$

Inputs

Settling time (S)

+

Reference value (ξ)

+

Maximum disturbance allowed at input (δ)

Compute (1, ∈)-exponential stability criterion

$$N = \left\lceil \frac{S}{h} \right\rceil,$$
 $l = \left\lceil \frac{N}{f} \right\rceil,$ $\epsilon = \left(\frac{\xi}{\xi + \delta} \right)^{\frac{1}{f}}$

h: sampling periodf: tuning parameter

(l, \in) -exponential stability criterion

i.e.,
$$\frac{\|x[k+l]\|}{\|x[k]\|} < \epsilon$$

Inputs

Settling time (S)

+

Reference value (ξ)

+

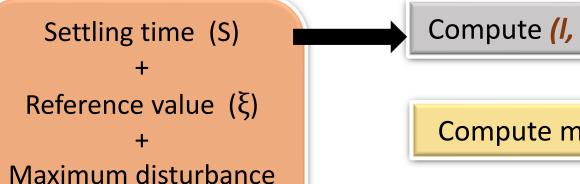
Maximum disturbance allowed at input (δ)

Compute (1, ∈)-exponential stability criterion

Compute minimum control execution rate *r*

$$\beta = \frac{ln(\frac{1}{\epsilon})}{l \times h}$$

$$r = \frac{2 \ln(\beta) + \ln(\chi_0)}{\ln(\chi_0) - \ln(\chi_1)}$$


 χ_0 , χ_1 : spectral radii of the open loop and closed loop dynamics matrices

(l, \in) -exponential stability criterion


i.e.,
$$\frac{\|x[k+l]\|}{\|x[k]\|} < \epsilon$$

Inputs

allowed at input (δ)

Compute (1, ∈)-exponential stability criterion

Compute minimum control execution rate *r*

Compute *stable (M, K)-firm* constraint

$$M = [r \times l]$$
,

$$K = l$$

(l, \in) -exponential stability criterion

i.e.,
$$\frac{\|x[k+l]\|}{\|x[k]\|} < \epsilon$$

Inputs

Settling time (S)

+

Reference value (ξ)

+

Maximum disturbance allowed at input (δ)

Compute (1, ∈)-exponential stability criterion

Compute minimum control execution rate *r*

Compute *stable (M, K)-firm* constraint

 (l, \in) -exponential stability criterion

Every l-length ratio of norm ||x|| decreases by damping ratio of ϵ .

i.e.,
$$\frac{\|x[k+l]\|}{\|x[k]\|} < \epsilon$$

Ensuring system's *exponential stability*

$$\frac{\|x[k+l]\|}{\|x[k]\|} < \epsilon$$

Inputs

Settling time (S)

+

Reference value (ξ)

+

Maximum disturbance allowed at input (δ)

Compute (1, ∈)-exponential stability criterion

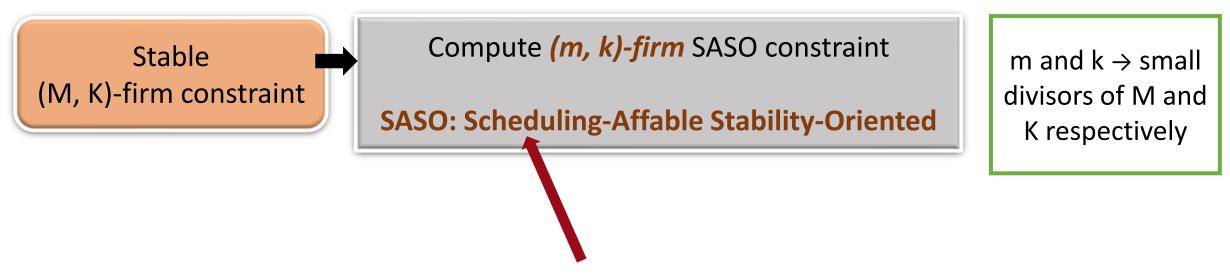
Compute minimum control execution rate *r*

Compute *stable (M, K)-firm* constraint

 (l, \in) -exponential stability criterion

Every l-length ratio of norm ||x|| decreases by damping ratio of ϵ .

i.e.,
$$\frac{\|x[k+l]\|}{\|x[k]\|} < \epsilon$$


Ensuring system's *exponential stability*

System's state converges to equilibrium point with *exponential decay rate*

$$||x[k]|| \rightarrow 0$$

SASO Constraint

- Scheduling affable: SASO constraints speed up the scheduling process.
- ➤ SASO constraints enhance the control performance: CESs following SASO constraints avoid scenarios of missing deadlines consecutively often.

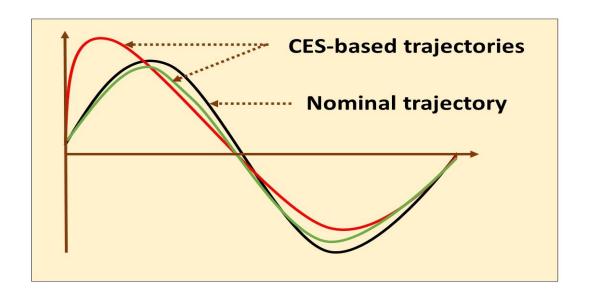
Step 2: Ensuring Safety

Criterion for Safety

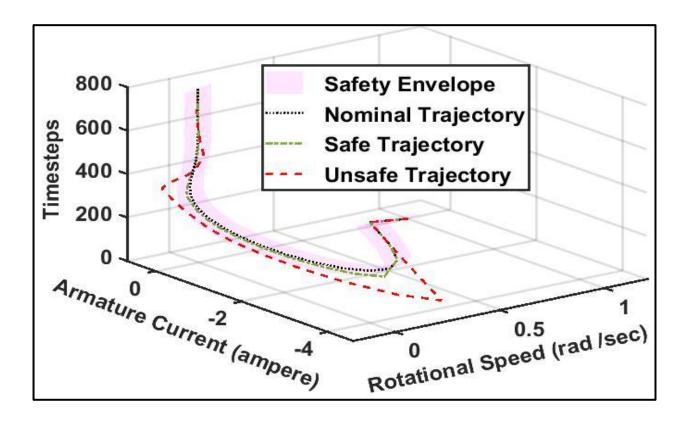
Bounded deviation from ideal behavior or nominal trajectory

Criterion for Safety

Bounded deviation from ideal behavior or nominal trajectory:


> Nominal trajectory (N): State evolution trajectory for all deadlines met, i.e., pattern '111...'.

 \triangleright CES-based trajectory (C_P): State evolution trajectory for deadline hit-miss pattern (CES), e.g., 11010.



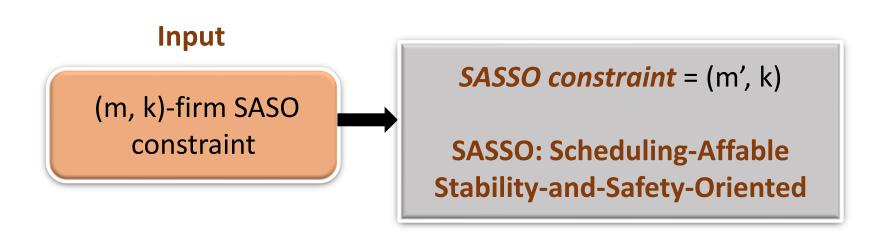
system's behavior with deadline misses

Criterion for Safety

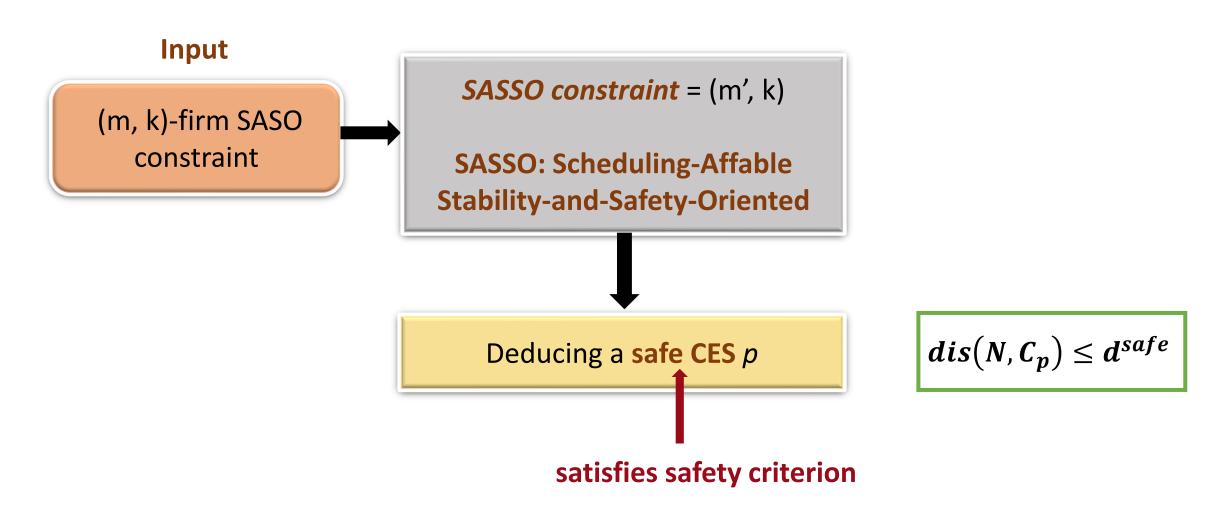
Bounded Deviation: The deviation must be bounded, i.e., $dis(N, C_p) \leq d^{safe}$, where d^{safe} is the safety bound.

Deviation of C_P from N: $dis(N, C_p)$

(measured in terms of Euclidean distance)


DC motor speed control system

Ensuring Safety


Input

(m, k)-firm SASO constraint

Ensuring Safety

Ensuring Safety

Theoretical Results Established

1. A safe CES *p* corresponding to a SASSO constraint ensures control safety over an *unbounded time horizon*.

$$dis(N, C_P) \rightarrow 0 \text{ as } t \rightarrow \infty$$

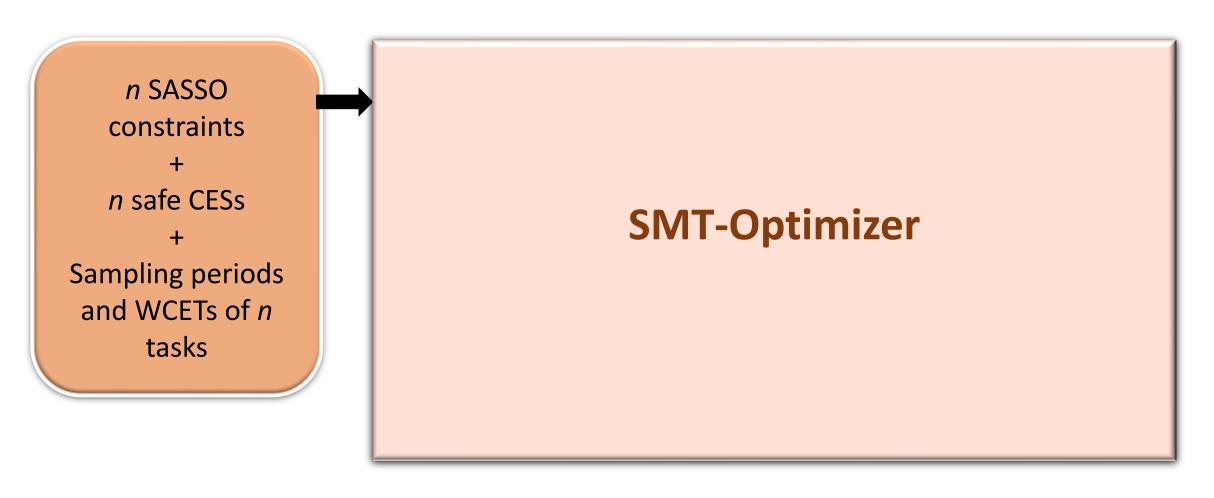
Theoretical Results Established

1. A safe CES *p* corresponding to a SASSO constraint ensures control safety over an *unbounded time horizon*.

There exists an upper bound T_{ub} on the time horizon length for safety verification (i.e., checking $dis(N, C_p) \leq d^{safe}$).

$$T_{ub} = \left[\frac{\ln{(2 ||\mathcal{A}_{ns}||^{l-1} ||x^n[0]||) - \ln{(d^{safe})}}}{|\ln{\epsilon}|} \right] \times l.$$

Theoretical Results Established


1. A safe CES *p* corresponding to a SASSO constraint ensures control safety over an *unbounded time horizon*.

There exists an upper bound T_{ub} on the time horizon length for safety verification (i.e., checking $dis(N, C_p) \leq d^{safe}$).

Exact time horizon length for safety verification is the *settling time*, from the time of application of an external disturbance.

Step 3: Schedulability Test and Synthesizing Schedule

Schedulability Test and Synthesizing Schedule

Schedulability Test and Synthesizing Schedule

n SASSO
constraints
+
n safe CESs
+
Sampling periods
and WCETs of n
tasks

SMT-Optimizer

- Feasibility related constraints
- Response-time related constraints
- Conflict-removing constraints
- Constraint for minimizing worst-case response time

Schedulability Test and Synthesizing Schedule

n SASSO
constraints
+
n safe CESs
+
Sampling periods
and WCETs of n
tasks

SMT-Optimizer

- Feasibility related constraints
- Response-time related constraints
- Conflict-removing constraints
- Constraint for minimizing worst-case response time

SAT

A feasible schedule

Schedulability Test and Synthesizing Schedule

n SASSO
constraints
+
n safe CESs
+
Sampling periods
and WCETs of n
tasks

SMT-Optimizer

- Feasibility related constraints
- * Response-time related constraints
- Conflict-removing constraints
- Constraint for minimizing worst-case response time

UNSAT

SAT

Tasks not schedulable

A feasible schedule

Summary of the Proposed Method

Control Design Parameter:

Settling Time

Step 1: Ensuring exponential *stability* of the system

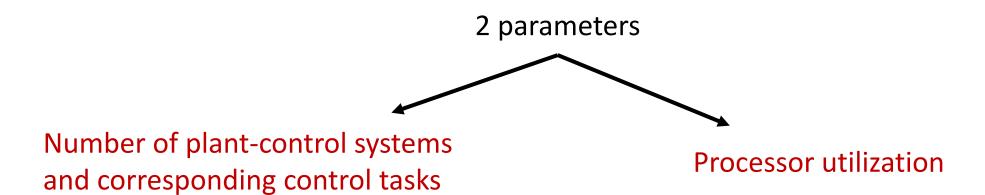
Control Safety Metric:

Deviation between ideal behavior and behavior with deadline misses

Set of n SASO constraints

Step 2: Ensuring safety over infinite time horizon

Set of n safe CESs and SASSO constraints


Minimizing the Worst-Case Response Time (WCRT)

Step 3: Synthesizing an *SMT-based*, safe and stable *schedule* with *minimized WCRT*

Evaluation

Sl. No.	Benchmark control systems considered from the automotive domain	Order of the system
1	Resistor-capacitor network (RC)	2
2	DC-motor speed control (DC)	2
3	Vehicle dynamic control (VDC)	2
4	Lane following Controller of an F1 tenth model car (F1)	2
5	Trajectory tracking control (TTC)	2
6	DC-servo control (DCS)	2
7	Cruise control (CC)	3
8	Adaptive cruise control (ACC)	3
9	Suspension control (SC)	4
10	Lane keeping system (LK)	4
11	Vision-based lateral control (LC)	5

Evaluation

Evaluation

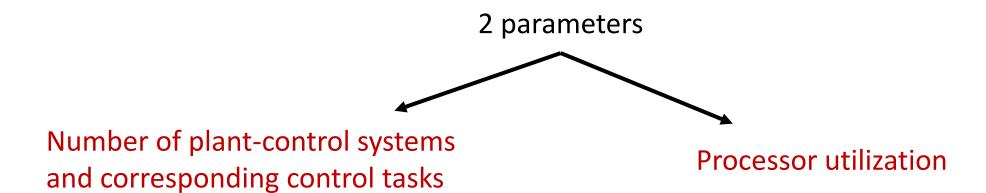
2 parameters

Number of plant-control systems and corresponding control tasks

Processor utilization

Tasks
$$\{T_i\}_{i=1 \ to \ n} : T_i = \{(m'_i, k_i), p_i, c_i, h_i\}$$

 (m'_i, k_i) : SASSO constraint


 p_i : Safe CES

 $c_{\rm i}$: WCET of the control task

h_i : Sampling period of the controller

Util. =
$$\frac{m'_i \times c_i}{k_i \times h_i}$$

Scalability Analysis

- Increase the number of tasks and job instances.
- Increase the processor utilization by increasing WCET.
- Aim: Report a feasible schedule with
 - 1. A fairly reasonable runtime overhead.
 - 2. *Improved* scope of *schedulability*.

Scalability Analysis

No of control tasks	No of jobs scheduled	Range of processor utilization for which a schedule is obtained	Time range to synthesize a safe and stable schedule
5	300	0.7 – 0.82	0.08 – 0.126 s (Less than 2s)
7	630	0.7 – 1.0	0.55 – 6.058 s (Less than 7s)
9	14,490	0.7 – 0.97	0.07 – 3.556 s (Less than 4s)
11	18,270	0.7 – 0.98	1.547 – 161.836 s (Less than 3min)
13	20,790	0.7 – 0.97	16.167 – 400.053 s (Less than 7min)
15	46,620	0.7 – 0.92	485.305 – 8517.031 s (Less than 2.5hr)

Scalability Analysis

			Time range to synthesize a safe and stable schedule	
5	300	0.7 – 0.82	0.08 – 0.126 s (Less than 2s)	
7	630	0.7 – 1.0	0.55 – 6.058 s (Less than 7s)	
9	14,490	0.7 – 0.97	0.07 – 3.556 s (Less than 4s)	
11	18,270	0.7 – 0.98	1.547 – 161.836 s (Less than 3min)	
13	20,790	0.7 – 0.97	16.167 – 400.053 s (Less than 7min)	
15	46,620	0.7 – 0.92	485.305 – 8517.031 s (Less than 2.5hr)	

[☐] For 15 tasks, schedules are synthesized within 7 min-38 min up to Util. < 0.85.

[☐] For Util. > 0.85, we obtain schedules but with considering a time-out of 3 hrs.

Comparison with the State-of-the-Art

State-of-the-art methods:

1) PGS (Pattern Guided Stable schedule)

- Sumana Ghosh, Souradeep Dutta, Soumyajit Dey and Pallab Dasgupta. 2017. *A Structured Methodology for Pattern Based Adaptive Scheduling in Embedded Control*. ACM Transactions on Embedded Computing Systems (TECS) 16, 5s, 189:1–189:22.

2) DSHT (Deterministic verification of schedule constructed with Statistical Hypothesis Testing)

- Shengjie Xu, Bineet Ghosh, Clara Hobbs, Enrico Fraccaroli, Parasara Sridhar Duggirala and Samarjit Chakraborty. 2023. *Statistical approach to efficient and deterministic schedule synthesis for cyber-physical systems*. In Proc. International Symposium on Automated Technology for Verification and Analysis (ATVA). Springer, 312–333.

3) SCS (Safe Constraint Synthesis to generate safe schedule)

- Shengjie Xu, Bineet Ghosh, Clara Hobbs, P. S. Thiagarajan and Samarjit Chakraborty. 2023. *Safety-aware flexible schedule synthesis for cyber-physical systems using weakly-hard constraints.* In Proc. Asia and South Pacific Design Automation Conference (ASP-DAC). 46–51.

Comparison with the State-of-the-Art

Our method referred to as FMSS: Formal Methods for synthesizing a Safe and Stable schedule

1. PGS (constructs a stable schedule)

Comparison with w.r.t. metrics:

- Safety
- Scope of schedulability
- Runtime Overhead

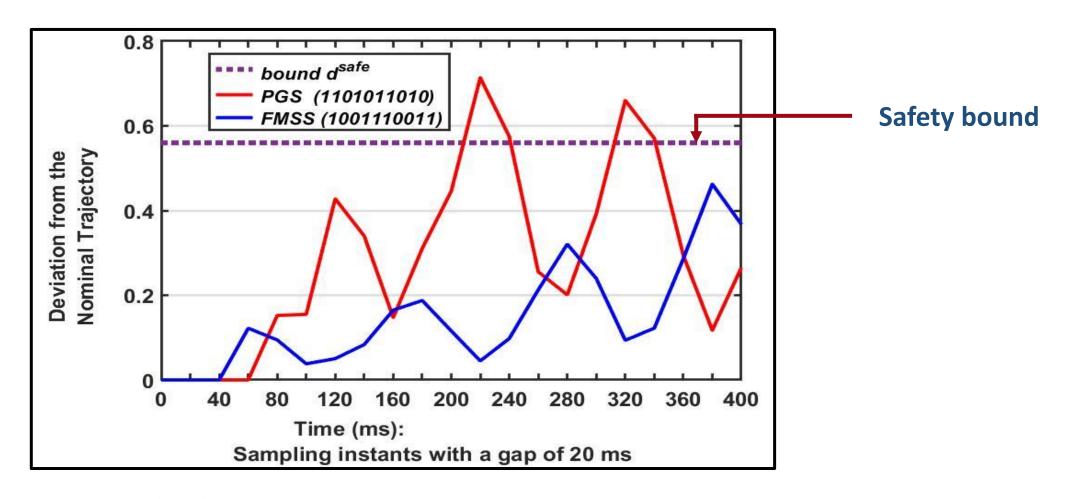
2. DSHT, SCS (construct a safe schedule)

Comparison with w.r.t. metrics:

- Stability
- Runtime Overhead

Col. 1	Col. 2	Col. 3	Col. 4	Col. 5
No of control tasks	Util.	Time taken by FMSS	Time taken by PGS stable constraints	Time taken by PGS with SASO constraints
5	0.76	0.100 s	80.625 s	0.456 s
	0.82	0.070 s	207.547 s	1.344 s
7	0.78	0.421 s	10.234 s	0.100 s
	0.82 – 1.0	✓	> 1 hr (timed out)	X
9 0.70		0.030 s	26.219 s	0.077 s
	0.72 – 0.97	✓	> 1 hr (timed out)	X
11	0.70 – 0.98	✓	> 1 hr (timed out)	X
13	0.70 - 0.92	✓	> 1 hr (timed out)	X
15	0.70 – 0.85	✓	> 1 hr (timed out)	X

• 1. Comparing runtime overhead

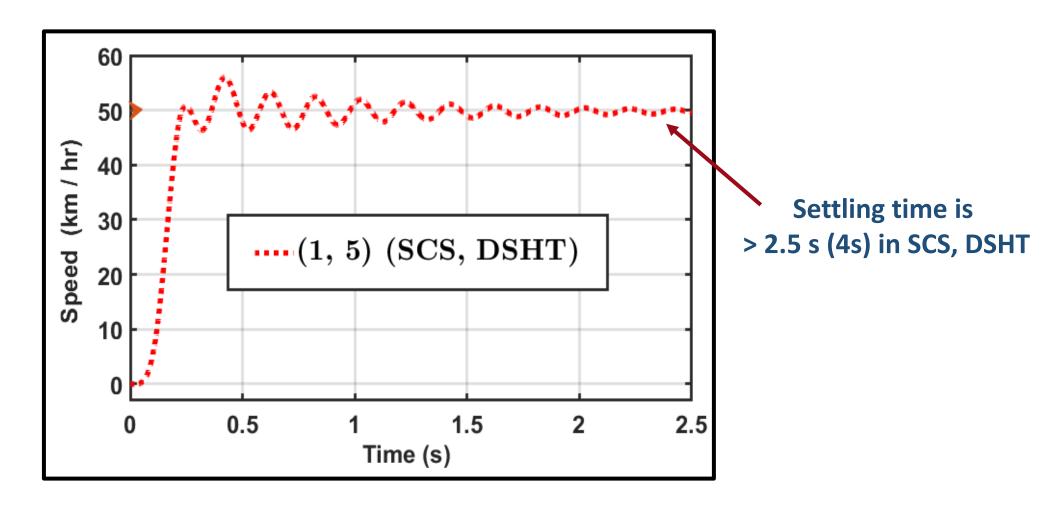

2. Comparing scope of schedulability

SASO constraints: part of FMSS

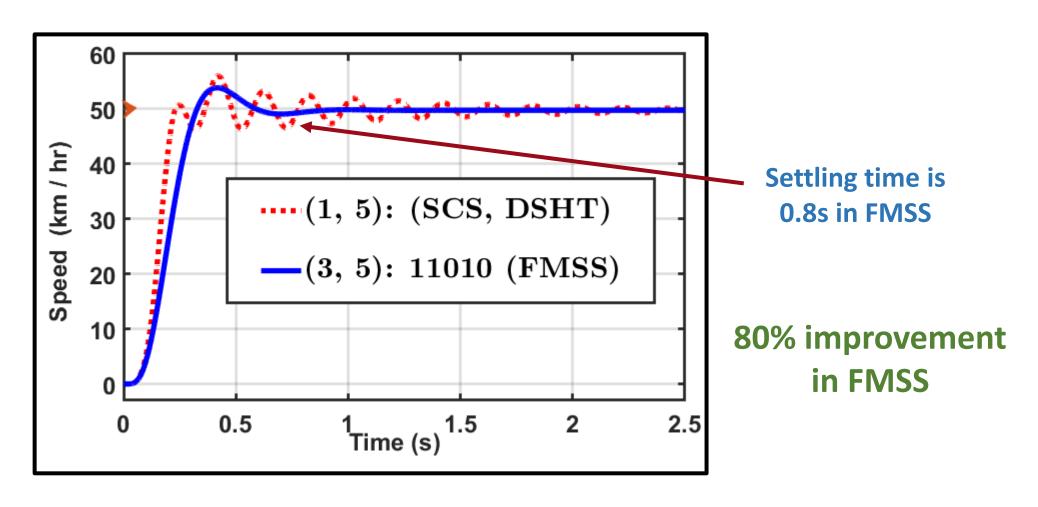
Considered here for fair comparison

Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	
No of control tasks	Util.	Time taken by FMSS	Time taken by PGS stable constraints	Time taken by PGS with SASO constraints	Improved runtime overhead in FMSS
5	0.76	0.100 s	80.625 s	0.456 s	
	0.82	0.070 s	207.547 s	1.344 s	Feasible schedule
7	0.78	0.421 s	10.234 s	0.100 s	obtained within
	0.82 – 1.0	✓	> 1 hr (timed out)	X	reasonable time
9	0.70	0.030 s	26.219 s	0.077 s	
	0.72 – 0.97	✓	> 1 hr (timed out)	X	Suffers
11	0.70 – 0.98	✓	> 1 hr (timed out)	X	from time-out
13	0.70 - 0.92	✓	> 1 hr (timed out)	X	issues
15	0.70 – 0.85	✓	> 1 hr (timed out)	X	

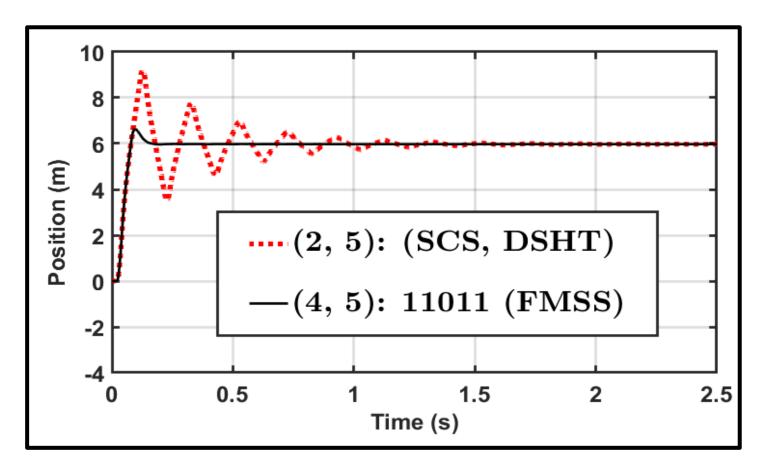
Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Incompanied accord
No of control tasks			Time taken by PGS stable constraints	Time taken by PGS with SASO constraints	Improved scope of schedulability in FMSS
5	0.76	0.100 s	80.625 s	0.456 s	111 1 10133
	0.82	0.070 s	207.547 s	1.344 s	
7	7 0.78 0.421 s 10.234		10.234 s	0.100 s	
	0.82 – 1.0	V	> 1 hr (timed out)	X	Feasible schedule obtained
9	0.70 0.030 s 26.219 s		26.219 s	0.077 s	
	0.72 – 0.97	✓	> 1 hr (timed out)	X	
11	0.70 – 0.98	✓	> 1 hr (timed out)	х -	— Tasks not
13	0.70 - 0.92	✓	> 1 hr (timed out)	X	schedulable
15	0.70 – 0.85	✓	> 1 hr (timed out)	X	



Violation of safety bound in PGS in F1-tenth model car system


 \clubsuit We correlate the (l, \in) -exponential stability criterion with the **settling time**.

Settling time \rightarrow (l, ∈)-exponential stability criterion \rightarrow stable constraint \rightarrow SASSO constraint \rightarrow safe CES.


❖ A **shorter settling time** signifies a **stable** and a **more responsive** system.

Cruise control system: (1, 5) is a safe constraint reported by SCS and DSHT

Cruise control system: (3, 5) is a SASSO constraint, 11010 is a safe CES, reported by FMSS

Settling time: 2.5s (DSHT, SCS)

Settling time: 0.2s (FMSS)

92% improvement in FMSS

Suspension control system: (2, 5) is safe constraint reported by DSHT and SCS

(4, 5) is a SASSO constraint, 11011 is a safe CES, reported by FMSS

Comparing the runtime overhead

No. of control tasks	Time taken (FMSS)	Time taken (DSHT)	Time taken (SCS)
5	0.08 s	13.50 s	748.37 s (12.47 min)

Runtime is quite high for a small task setup

Comparing the runtime overhead

No. of control tasks Time taken (FMSS)		Time taken (DSHT)	Time taken (SCS)
5 0.08 s		13.50 s	748.37 s

DSHT and SCS: employ time-consuming iterative approaches, probabilistic methods, reachability analysis

An exponential time rise possible for a higher number of tasks in DSHT and SCS!!

Comparative Comments on Other Works

Method in [1]:

- Constructs an SMT-based schedule.
- > Ensures control safety in a weakly hard scenario.
- > But the method is limited to medium-sized systems.

[1]: Anand Yeolekar, Ravindra Metta, and Samarjit Chakraborty. 2024. *SMT-based Control Safety Property Checking in Cyber-Physical Systems under Timing Uncertainties*. In Proc. on VLSI Design and Embedded Systems (VLSID). 276–280.

Comparative Comments on Other Works

Comparing the runtime overhead

No. of control tasks	Time taken (FMSS)	Time taken [1]	Memory Consumed (FMSS)	Memory Consumed [1]
4	0.04 s	40 s	20 MB	48 MB

SMT-based scheduling in FMSS is **time-** and **compute-efficient**: pruned search space of the SMT-solver with SASO and SASSO constraints

Runtime and memory consumption is quite high for a small task setup

[1]: Anand Yeolekar, Ravindra Metta, and Samarjit Chakraborty. 2024. **SMT-based Control Safety Property Checking in Cyber-Physical Systems under Timing Uncertainties**. In Proc. on VLSI Design and Embedded Systems (VLSID). 276–280.

Conclusion

Contributions of this paper:

- ✓ *Triplet (stability, safety, schedulability):* Explored for the *first* time in the literature.
- ✓ **Stability and safety:** Ensured over an *infinite* horizon.
- ✓ **Proposed scheduling approach:** Minimized WCRT offers improved scope of schedulability.
- ✓ **Proposed SMT-based approach:** Time-efficient, hence increases scalability.
- ✓ **Experimental comparison:** Proposed method *outperforms the state-of-the-art* methods.

Conclusion

Contributions of this paper:

- ✓ *Triplet (stability, safety, schedulability):* Explored for the *first* time in the literature.
- ✓ **Stability and safety:** Ensured over an *infinite* horizon.
- ✓ **Proposed scheduling approach:** Minimized WCRT offers improved scope of schedulability.
- ✓ **Proposed SMT-based approach:** Time-efficient, hence increases scalability.
- ✓ **Experimental comparison:** Proposed method *outperforms the state-of-the-art* methods.

Future works:

- Stability and safety for scheduling in non-linear control systems.
- Dependencies in the task model while designing a safe and stable schedule.

THANK YOU!