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Real-time scheduling of multiple control tasks in a weakly hard setting is an emerging research direction, as it
offers a more flexible and feasible environment for task scheduling. This is especially pertinent for resource-
constrained embedded applications where tasks are allowed to miss a few deadlines for prudent sharing
of computational resources. However, a control task missing its deadline could result in the system being
unsafe or unstable. A significant amount of research efforts have been reported in the literature addressing
the schedulability of control tasks while preserving the stability or safety. However, all of them focus on a
stable schedule or a safe schedule, but not both the safety and stability aspects together. In this work, we
ensure both control stability and safety to generate a safe and stable schedule for a weakly hard task system.
In particular, we gradually endorse stability, safety, and schedulability, where we first synthesize a weakly
hard constraint that preserves the desired stability of each control task. Next, we correlate stability with
control safety and establish some mathematical results that guarantee control safety for an unbounded time
horizon, unlike the existing methods. Finally, by leveraging Satisfiability Modulo Theories (SMT), we synthesize
the schedule that ensures control stability and safety while minimizing the worst-case response time of all
the tasks, in a time-efficient way. To our knowledge, this is the first work to address stability, safety, and
schedulability together for weakly hard task systems. We validate our method through extensive experiments
using standard automotive benchmarks. In addition, we demonstrate the efficiency of the proposed method in
comparison with some of the state-of-the-art techniques, as well as highlight its scalability, thereby establishing
its applicability in real-world scenarios.
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software; » Software and its engineering — Real-time schedulability.

Additional Key Words and Phrases: Real-Time Embedded Systems, Control Stability, Control Safety, Scheduling

ACM Reference Format:

Debarpita Banerjee, Parasara Sridhar Duggirala, Bineet Ghosh, and Sumana Ghosh. 2025. A Formal Approach
towards Safe and Stable Schedule Synthesis in Weakly Hard Control Systems. ACM Trans. Embedd. Comput.
Syst. 1, 1, Article 1 (July 2025), 25 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Real-time task scheduling is one of the most prominent areas of research under the domain of
embedded and cyber-physical systems [2, 12, 21]. Any real-time task has a hard real-time requirement
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to complete its execution before its deadline to ensure the system’s functionality. However, such
hard requirement often leads to situations, where the resources can no longer be appropriately
shared among the tasks, leading to an infeasible schedule of tasks in the shared processor. To
improve the schedulability and resource allocation among multiple tasks, especially for resource-
constrained embedded environments, recent design trends advocate migrating to a weakly hard
setting [3]. Here the tasks can miss some of their deadlines occasionally, without hampering the
system’s performance. In this work, we consider such a weakly hard setup where each control
task is only required to meet at least m deadlines in every sequence of k consecutive deadlines,
following an (7')-firm constraint. Real-time control systems literature has explored the weakly
hard framework in several contexts, such as resource and priority management [14, 19], control-
scheduling co-design [10, 16], platform-level uncertainty management [15, 23]. In addition, control
systems literature has accounted for weakly hard settings in other parallel contexts, and several
seminal results exist in the related areas, e.g., network control systems [4, 12, 16], secure control
systems [1]. However, in the presence of deadline misses, it is essential to ensure two major aspects,
i.e., control stability and control safety, as it is implicit in the design of any hard real-time control
task system. Intuitively, control stability refers to the ability of maintaining the desired state even
in presence of external disturbances, whereas, control safety indicates that the system remains in a
safe state despite timing uncertainties like deadline misses. Therefore, in our work, we carefully
consider both stability and safety during schedule synthesis for a weakly hard control system
to achieve the desired outcome—a stable and safe schedule. Existing methods in this direction
explore schedulability of control tasks focusing either on the stability or on the safety aspect. For
example, [7, 10, 16] focus on schedulability paired with stability, whereas safety is combined with
schedulability in the recent works like [13, 23-25]. Some research efforts concentrate only on a
single aspect at a time like stability [4, 17], or safety [15]. In contrast, in this work, we explore the
triplet, (S1: Stability, Sy: Safety, S;: Schedulability) in the context of weakly hard control systems,
for the first time in the literature. In particular, in this work, an exponential stability criterion is
derived from the settling time requirement [10], where settling time indicates the specific time by
which the system’s output reaches the desired reference. On the other hand, the control safety is
established by bounding the deviation between the ideal behavior (with no deadline miss) and the
behavior of the system under deadline misses [23, 25]. In general, corresponding to any ('Z)-ﬁrm
constraint, there is a collection of f(m, k) = kC+ ¥Cppp1 ++ - -+ ¥C). deadline hit-miss patterns. To
obtain safe ()-firm constraints, a safety verification process is applied on all the f(m, k) patterns
for multiple such (7)-constraints. This is done by verifying whether the deviation, between the
system’s state trajectory following each such pattern and the state trajectory corresponding to the
ideal behavior, crosses the given bound. The existing methods account for time-consuming and
extensive reachability algorithms [15, 23] or probabilistic techniques [8, 25] to perform this safety
verification. We overcome the perplexity of handling the extensive verification process, for the
combinatorial collection of patterns respecting multiple (':)—constraints, in the following way.

Novelty of the Proposed Method. We integrate the concepts of stability and safety to not
only obtain a safe and stable schedule but also make the safety verification process [15, 23, 25]
computationally efficient. We begin by ensuring stability through settling-time requirements,
deriving exactly one stability-oriented (’,?)-ﬁrm constraint for a control task, with significantly
smaller values of m and k. This specifically accelerates the safety verification process by avoiding
multiple (’,’;)s and also enhances the control performance. Furthermore, we ensure control safety
over an infinite time horizon, which is not addressed in existing methods such as [23-25], despite
adopting the same safety notion as ours. On ensuring both stability and safety, we then proceed to
synthesize a safe and stable schedule by employing the Satisfiability Modulo Theories (SMT) [18].
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A Formal Approach towards Safe and Stable Schedule Synthesis in Weakly Hard Control Systems 1:3
The SMT-based approach has remained relatively underexplored in weakly hard control scheduling
(with a few exceptions like [26]), mainly due to its inherent scalability challenges, as it requires
exploring a vast search space of potential schedules. However, in our work, SMT is able to report
a feasible schedule within a reasonable time frame because we significantly prune the search
space of the SMT solver through two key steps: i) by deducing exactly one stability-oriented
(7')-firm constraint for a control task and ii) by selecting one deadline hit-miss pattern for the
task which obeys both stability and safety criteria. Furthermore, we generate a non-preemptive
schedule by minimizing the worst-case response time (WCRT) of all the control tasks. This particularly
helps in outperforming the existing preemptive EDF-based scheduling technique [10] and also the
SMT-based scheduling approach with non-preemptive-EDF [26], used in a similar context as ours.

Outline of the Proposed Method. The proposed method generates a stable and safe schedule
for a set of n control tasks sharing a common processor. The method has three main steps. First,
to incorporate stability (S;), we consider the standard control design parameter, settling time,
to deduce exactly one stability-oriented ('}')-firm constraint for a control task, complying with
the exponential stability criterion. Once stability (S;) is ensured, we proceed to the second step
with n stability-oriented (’,?)-ﬁrm constraints for n tasks, to bring control safety (S,) into effect.

For a control task, safety is ensured by: i)
constructing a stability-and-safety-oriented
(';’,,)-ﬁrm constraint, and ii) choosing a spe-
cific deadline hit-miss pattern p that meets

Control Design Ensuring exponential stability of the system

S1

Set of ‘n’ stability-oriented

Control Safety Metri weakly hard constraints

Deviation between the

the (rg,,)-ﬁrm constraint, ensuring that the
system’s performance only deviates from
the ideal behavior (where no deadline misses
are allowed) by a bounded amount [25]. We

ideal behavior and the

~.; Ensuring safety over infinite time horizon

()

behavior with deadline -
misses

Set of ‘n’ hit-miss patterns,
obeying stability- and safety-
oriented weakly hard constraints

Minimization of the
i Worst-Case Response
] Time (WCRT)

also establish the control safety over an infi-
nite time horizon and mathematically prove
that it is sufficient to perform the safety ver-
ification till the settling time. The final step
accounts for schedulability (S;) to generate
a stable and safe schedule, having the set of n hit-miss patterns, {p;, ps, - - - , pn} following their re-
spective stability-and-safety-oriented (r,':,’)-ﬁrm constraints, as the input. We develop an SMT-based
schedule minimizing the WCRT. Figure 1 presents an overview of these three steps. We show that
our proposed method not only guarantees the essential attributes of stability and safety, but also
enhances control performance, accelerates the schedule synthesis process, and schedules a large
number of jobs. The experimental observations thenceforward, justify the discussed steps and the
constructions.

Synthesizing an SMT-based, safe and stable
schedule (53)

Fig. 1. Outline of the proposed method

Notable Contributions. Besides addressing the triplet (S, Sz, S3) for the first time to introduce
a safe and stable scheduling approach, our method enriches the existing literature as follows.

1) We correlate the control stability and control safety systematically by first deriving stability-
oriented (':) from the settling time and by deriving the stability-and-safety-oriented (',:l,’) from (']?),
with considerably smaller values of m, k, m” and k’. This helps to improve the control performance
and also speeds up both the safety verification and schedule synthesis processes. Furthermore, we
establish the control safety over an unbounded time horizon and also mathematically prove the
sufficiency of actually performing the safety verification till the settling time.

2) We develop a novel SMT-based scheduling approach that minimizes the WCRT to generate
a feasible schedule enhancing the scope of schedulability. We streamline the search space of the
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SMT solver and significantly make it time- and compute-efficient by selecting exactly one deadline
hit-miss pattern for a task, which obeys the stability and safety constraints for that task.

3) We conduct extensive experiments over 15 standard benchmark control systems from the
automotive domain to highlight the scalability and pertinence of the proposed method in real-world
applications. Specifically, we compare against four existing works [10, 23, 25, 26] to demonstrate
the efficiency of the proposed method. When comparing our method’s runtime to the approaches
mentioned above, we observe significant improvements. For instance, our method successfully
reports a feasible schedule within a highly reasonable time in most cases, while the method proposed
in [10] encounters time-out issues. Additionally, we achieve a 92% improvement in stability and
control performance compared to [23, 25], and a 21.57% improvement in safety compared to [10].

Organization. This paper is organized as follows. Section 2 lists down the related research
work, highlighting their impacts and constraints. Section 3 discusses the background and Section
4 considers a case study to highlight the core challenges that the proposed approach aims to
address. Section 5 delineates the entire method describing the three major steps. Section 6 presents
experimental evaluations to showcase the efficiency and scalability of the proposed method. Finally,
Section 7 summarizes the entire work with concluding remarks and future works.

2 RELATED WORK

Here, we present the related research work that addresses various issues including each of the
three aspects, i.e., stability (S;), safety (Sz) and schedulability (S;), or their combinations.

S1: Techniques for preserving stability in presence of deadline misses have been presented in
[7, 10, 12, 17, 20]. The work explored in [17, 20] employs the idea of joint spectral radius, as a
measure of stability. Asymptotically stable systems are considered in [7], whereas the exponential
stability criterion, derived from the control design parameter, settling time, is dealt with in [10-12],
which we too adopt in our work. The first three works discuss schedulability along with stability,
and the line of work of [10] being similar to ours, we compare with them particularly, to prove
the supremacy of the proposed method over theirs (ref. Section 6.3). None of the above methods
constructs a single, stability-oriented (',;')-ﬁrm constraint for each task, catalyzing both the safety
verification process and the schedule synthesis.

S2: Several types of safety analysis mechanisms have been explored in the last few years and
many of them are applied in the scheduling context, too. Safe state sets (the state variables remain
within a safety bound) are considered in [26], with which they develop a scheduling scheme and
we show that our scheduling strategy is safe and also supersedes theirs. [13] establishes a co-design
technique, DECNTR, which allows switching of sampling periods within a safe range and ensures
the schedulability and robustness, maintaining the underlying safety. We do not follow this multi-
mode control strategy based on the changes in the sampling period and also the co-design approach
in our work. The quantitative safety notion, i.e., how much a trajectory, following a deadline hit-
miss pattern, deviates from the ideal case with no miss, is addressed in [15, 23-25], which we too
account for, in our work. The calculations for estimating an upper bound on this deviation through
various reachability algorithms [15], iterative approaches [15, 23] and probabilistic methods [25],
are complex and time-consuming. In contrast to these existing approaches, we use techniques from
stability to deduce (',';)—constraints that ensure safety. Also, we prove the safety till an infinite
horizon, which is missing in these methods. Moreover, the weakly hard schedules generated by
[23, 25] could potentially cause the systems to be unstable, in contrast to ours (ref. Section 6.3).

S3: Scheduling of weakly hard control tasks, without accounting for stability and safety, is
studied in [6, 14, 19]. The work in [14] uses an EDF scheduling policy to bound the distribution
of deadline misses for uniprocessor systems and typical worst-case analysis (TWCA) serves as a
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tool to compute the weakly-hard constraints. Fixed-priority preemptive schedulers are explored in
[6, 19]. The former associates each job with a job-class, and the job’s response time along with the
job-class patterns aid to the scheduling process. However, the schedulability analysis for a set of
periodic tasks, is based on an MILP formulation in [19]. Some work considering the blend of stability
and schedulability includes [10], which solves an ILP to generate a stable schedule using EDF as
the underlying scheduling algorithm. We compare with their method particularly, to prove the
efficiency of our scheduling strategy (ref. Section 6.3). The authors of [7] construct an online state-
aware scheduling approach, guaranteeing the system’s stability and control performance. They
schedule all the critical and some of the non-critical jobs reporting low schedulability ratios, for
not too high utilization values. In contrast, we report a schedule even with much higher processor
utilization in most cases. Safety is combined with schedulability to design a safe schedule in [23-25],
where an automata-based scheduler, confined by the limitation of having equal sampling periods
for all systems, is considered mostly. Our technique generates a schedule without the constraint of
identical sampling periods. SMT-based scheduling, though well-studied in other areas of real-time
systems [5, 21], is a research direction that is actively being explored in this domain. The only
existing SMT-based scheduler that too tackles safety is [26]. However, this method suffers from
higher complexity issues due to the iterative process of counter-example-guided refinements to
obtain a safe schedule. On the other hand, the methods dealing with WCRT analysis [6, 22] work
in different settings; either in multiprocessor systems or in circumstances handling worst-case
temporal interference on a job-class. The framework considered in our work is different from
these kinds of existing methods, as we determine the job’s start and finish time by minimizing its
response time, and its arrival time is computable from the safety and stability criteria. Such an idea,
merged with SMT-based scheduling, is also a salient contribution of the proposed method.

3 BACKGROUND

This section discusses the system layout, consisting of the plant-controller model, the control
performance, stability and safety paradigms followed by the description of the fundamentals of the
weakly hard control task set.

3.1 Plant-Controller Pair

The dynamical system under consideration is referred to as the plant and there is a stabilizing
feedback controller, which on discerning the plant output/plant state, regulates the control input
periodically. Both of these together constitute the plant-control closed loop system, commonly known
as a feedback control loop. The plant’s dynamics are specified by a set of differential equations, also
known as state equations, given as, x(t + 1) = Ax(t) + Bu(t), y(¢) = Cx(t). The constant time
gap by which the plant’s dynamics are checked by the controller is referred to as the sampling
period of the controller. The choice of sampling period plays an important role in designing an
appropriate controller. In this work, we consider discrete linear time-invariant (LTI) systems and
the state equations are discretized to obtain the discrete LTI dynamics of the plant, given as follows.

x[k +1] = Agx[k] + Bgu[k], yl[k] = Cgax[k]. (1)

Here, the vectors x[k], y[k] and u[k] represent the plant state, output and the control input
respectively, at the k-th sampling instant, or at time ¢t = kh, where k € N and h is the sampling
period. Ag, B4, and Cy4 are the system matrices. The LTI dynamics of the controller is given as,

ulk] = Kx[k - 1]. @)

where K is the feedback control gain. The correct working of the controller relies upon the suitable
values of the gain. In this work, we consider static controllers, i.e., controllers where the control
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1:6 D. Banerjee et al.

action is a function of only the most recent state measurement. Also, we consider a one-sample
delayed system, as modeled in Eq. (2), and we use the standard optimal control technique, Linear
Quadratic Regulator (LQR) for the controller design.

The discrete-time controller is generally implemented as a software control task in the underlying
embedded architectural platform, where it gets executed periodically with a period of h. The control
task needs to complete its execution before a certain time, which is known as its deadline and
this is its real-time requirement to be satisfied. In this work, we follow the logical execution time
paradigm, i.e., the system’s state, sampled at timestep k — 1, is used to obtain the new control input
at timestep k (as in Eq. (2)). The new input is applied at the deadline (equal to the sampling period
here) of the control job [17].

3.2 Control Performance and Stability

Both the control performance and the system’s stability are cardinal features when dealing with
a feedback control loop. We consider the control performance metric as the settling time. It is
defined as the required time by which the system output reaches and remains around the reference
value (e.g., within 5 % error band), after responding to a sudden change in the input (e.g., step-
like reference change), under the assumption that the system is asymptotically stable when no
deadlines are missed. The settling time is a standard control design parameter and we use it to
deduce the exponential stability criterion in our method (ref. Section 5.1). We state below the idea
of exponential stability that we consider as the notion of the system’s stability [10].

DErFINITION 1 ((I, €)-Exponential Stability Criterion). A dynamical system, given by Eq. (1), is
said to be (1, €)-exponentially stable, if for a given € € (0,1) and anl € N, % < €, for every
k € N, i.e, every I-length ratio of the state norm ||x|| (2-norm) decreases by a damping factor of €.

Intuitively, the above definition states that a reduction in the ratio of norms by € at every [
sampling intervals leads the system’s norm to become small over time (tending to zero) and ensures
exponential stability. In discrete-time LTI systems, like we consider in our work, exponential stability
is equivalent to other forms of stability, e.g., Lyapunov stability and bounded-input, bounded-output
(BIBO) stability. Hence, these forms of stability are also accounted for in our method.

3.3 Weakly Hard Control Systems

In a resource-constrained embedded environment, allowing the tasks to miss a few of their deadlines
occasionally, favors the task scheduling process and reduces resource overload, but the system
performance and stability must not be inhibited [10, 16]. In a hard real-time setting, where all the
control tasks need to meet their respective deadlines, it often becomes arduous to abide by such
stringent requirements, and therefore, the concept of weakly hard systems eventuates. It is a much
more lenient and flexible setting, provided that the number of deadline misses in a sequence of
task invocations is bounded. For example, in a series of k consecutive deadlines, at least m of them
must be met, which is popularly termed as the (',f)-ﬁrm weakly hard constraint. There are many
other such familiar constraints in this model, but we consider the (',?)-ﬁrm constraint in our work.

The deadline miss is generally manifested as a control execution skip. We adhere to the hold-and-
kill policy [15, 17] in this work, which means, for a control execution skip in a sampling interval
[k — 1, k), no new control input is computed and the plant state is updated using the last control
input from the preceding iteration, i.e., u[k] = u[k — 1]. Considering the augmented state vector
x[k]

(both state variables and control input) as z[k] = [u[k]

, the closed loop dynamics matrices Aps

Ag Bd]

and Aj in situations of no execution skip and an execution skip, are obtained as, Aps = [ K 0
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and A = /t)d BId] respectively. Conforming to this, we define a Control Execution Sequence
(CES) as a pattern of deadline hits and misses (equivalently, a pattern of no execution skip and
execution skip) in a sequence of consecutive task invocations, where a deadline hit and miss are
denoted by 1 and 0 respectively. For example, if m = 2 and k = 5, then one CES following the
(g)—ﬁrm constraint, could be, s = 11010, for a time horizon of 5. Note, here the execution skips
occurred at the third and fifth sampling intervals and the system evolves with this CES as follows,

zlk + 5] = AsAps As Aps Apnszlk).

3.4 Control Safety

In case of weakly hard real-time settings, since execution skips are allowed deliberately, it is
essential to determine how much the system deviates from its ideal behavior (i.e., following the
sequence 111 --+), when it evolves following any weakly hard constraint. The notion of control
safety that we consider in our work, is satisfying a given safety bound [15, 25] all the time. Ensuring
only the system’s stability is not sufficient for safety-critical systems that rely upon some weakly
hard constraints. Therefore, we pursue integrating it with control safety and thereby designing a
stable and safe system. The following terminologies defined below formalize the above arguments.

DEFINITION 2 (Nominal Trajectory). A nominal trajectory N is a sequence of state vectors x[0], x[1],
<+« ,x[T] € RY, or the state evolutions up to a finite time length T, where x[0] is the initial state and
x[j] is calculated using Eq. (1) and (2), for j =1 toT.

Note that the state evolution based on the ideal sequence 17 forms the nominal trajectory.
Similarly, when execution skips are allowed following any (',':)—ﬁrm constraint, we have a CES-
based trajectory C, where the system evolves with a CES that follows the given (’,’:)—ﬁrm constraint
(ref. the example at the end of the previous section). Note that the initial state of any such CES-based
trajectory C is the same as that of M. Let x™ = (x}, xJ,---, x;') and x¢ = (x{, x5, , x;) denote
the state vectors for trajectories NV and C respectively, and dis(.) be the Euclidean distance on R?
(i.e., using the ||.||2-norm). Taking into account the infinite norm over time, the deviation of C
from N is expressed as,

9
AN €) = max dis(NL, CLID) = gmax 1"LJ] = <Ll = max. || DL = D"

DEFINITION 3 (Safety Requirement). A CES meets the safety requirement, if its trajectory C obeys
the criterion: A(N, C) < d*¥¢, where d*¥® is the given safety bound and N is the nominal trajectory.

Since A is the maximum of the deviations at all time-points, thus, the quantity dis(N[j], C[j])is
less than or equal to d*¥*, at each time-point j.

3.5 Control Task Set

We aim to synthesize a safe and stable schedule for a set of n independent control tasks in a
uniprocessor system, sharing a common processor. Let Tc = {77, 73,+++, Tn} be the set of n
control tasks that are executed together following a set of CESs P = {p1, p2,*+*, pn}. These
CESs are obtained by satisfying some stability and safety criteria, which will be discussed in
subsequent sections. Each task 77; is characterized by its arrival time (a;), sampling period (h;),
worst-case execution time (WCET) (c;) and relative deadline (d;), where d; is considered to be
equal to the sampling period h;. The position of deadline hits, i.e., a 1 in a CES p; or p;[j] = 1,
indicates a job instance j of that task, whose arrival time (a;;), sampling period (h;;), WCET
(cij), relative deadline (d;;) and absolute deadline (a;; +d; ;) are given by j X h;, h;, ¢;, d; and
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1:8 D. Banerjee et al.

(j+1) X h; (asd; = h;), respectively. For example, let 7 be a task with sampling period 3 ms and
p = 101 be its CES, conforming to the stability and safety criteria. The jobs corresponding to the
positions p[0] and p[2], have the arrival time, sampling period, relative and absolute deadlines as,
(0ms, 3ms, 3ms, 3ms) and (6 ms, 3 ms, 3 ms, 9ms), respectively. Moreover, for each job instance,
we have three other parameters, namely, the start time (when a job begins execution), finish time
(when a job completes execution) and the response time (difference between the finish time and the
arrival time). For the j-th job of task 77, these parameters are denoted by st;;, fin;; and res;;,
and thus by definition, res;; = fin;; — a;;. The worst-case response time (WCRT) of a task 7; is
the maximum of the response time of all its jobs, i.e., WCRT(77) = max;cj(7;) res;j, where J(7;)
denotes the set of jobs of task 77;. For the task 77; to be schedulable, WCRT(7;) < d; must hold, for
each i. The relevance of the parameters is elaborated while discussing schedulability in Section 5.3.

An Important Note: In this work, we consider an offline schedule, where we determine the
ordering of task execution at the design time. Also, we use static controllers and do not re-design
them by updating the sampling period to enhance the control performance or reduce the resource
overload. Rather, keeping the sampling period fixed, we synthesize an (',Z’)-ﬁrm constraint for
each control task that ensures both the system’s stability and safety while enhancing the control
performance. Having the sampling periods and WCETs as fixed inputs, if we try to schedule all
the n tasks in a hard real-time setting, then it may often lead to a scenario where all the tasks
can no longer be scheduled on one processor. Even in a weakly hard setting, if the scheduler
allows some of the jobs to miss their deadlines in order to obtain a feasible schedule, then the
deadline hit-miss sequence returned by the scheduler may not satisfy the underlying stability
and safety requirements. This may lead to diminished control performance. Hence, considering
resource-constrained systems, we intentionally allow some execution skips for a control task to
obtain its CES following an (',Z')-constraint. This CES complies with both the stability and safety
criteria (ref. Definitions 1 and 3 respectively). Each of the n tasks is then scheduled on the processor
following its CES.

4 A MOTIVATIONAL EXAMPLE

We now consider a case study of a DC motor speed control system (MS) and discuss its stability
and safety constraints, to illustrate how the proposed method incorporates these aspects in task
scheduling. MS is a second-order dynamical system that controls the rotational speed of the motor
(output) by regulating the motor terminal voltage (control input). Since, it is a safety-critical
application, an uncontrolled motor speed can lead to overheating and hazardous outcomes, hence, it
is crucial to maintain a stable speed, within a safety limit. The system dynamics matrices, A, B and
C (ref. Section 3.1) of the control system are given as, A = [ :(1)002 1_2 ] ,B= [ (2) ] ,C=[10].
The state variables denote the rotational speed and armature current. Suppose that MS is designed
to achieve a reference speed of 0.5 rad s™1. If there is a sudden increase in the speed (say it reaches
to 1.2rad s~ at maximum) due to some external input, the speed should decrease and reach the
reference, i.e., 0.5rad s™!, within the settling time (ref. Section 3.2), say 0.3 s. The discrete-time
controller for this MS is implemented as a software control task in the embedded platform and it is
sampled periodically with a time gap of h, say 10 ms (sampling period).

To ensure stability in a weakly hard real-time setting in our proposed method; we deduce the
(1, €)-exponential stability criterion (ref. Definition 1) from the settling time, maximum disturbance
at input and the reference values, thereby deriving exactly one stability-oriented (','C')—ﬁrm constraint
(ref. Section 5.1). This guarantees that, if the system’s state evolution follows any CES corresponding
to that (7'), then the output reaches the desired reference within the settling time, after responding
to a sudden change in the input. Figure 2 depicts scenarios of stable and unstable output responses
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corresponding to (170) and (150) constraints respectively, when the system is simulated till a time

horizon of 2s. Suppose that the (170)-c0nstraint is derived from the (I, €)-stability criterion and
we consider any CES following (170) to simulate the
system. We observe that the corresponding output
(marked with red) reaches the reference, 0.5rad s™!,
within the settling time, 0.3 s, after responding to a
sudden increase in the speed to 1.2rad s™!. On the
other hand, considering the (150)—constraint, the out-
put not only fails to reach the reference within 0.3 s,

. . . 0 0.3 0.6 0.9 1.2 15 1.8 2
but also shows a highly transient response initially Time (s)
(marked with blue), which may lead to undesirable
performance. This implies that the underlying sta-
bility is not hampered if 3 or lesser deadlines are missed in a sequence of 10 deadlines (i.e., the
(170)-constraint), however the system tends to be unstable on missing 5 or more deadlines. This
substantiates the fact that the proposed method ensures the system’s stability in a weakly hard
setting, by confirming that the system stabilizes quickly after responding to sudden changes. Also,
the exponential stability is guaranteed (complying with the (I, €)-exponential stability criterion).

However, it is vital to ensure that the system’s

behavior should not deviate significantly from the
. . . . . 800 Safety Envelope
ideal/nominal behavior (no deadline misses) be- —  Nominal Trajectory

1 ~= Unstable
— Stable

Rotational Speed (rad/sec)

Fig. 2. Stable and unstable responses in MS

fore meeting the settling time requirement, i.e., & “+ Safe Trajectory
. . . 3 400 - - Unsafe Trajectory
during the transient phase. The notion of control 3
. . ) . £ 200
safety considered in our work is characterized by ~ F
bounding such deviations. In a weakly hard sce- 4
"

nario, our goal is to ensure that the state trajec-
tory C, corresponding to some CES allowing a few " e O
deadline misses, always deviates from the nomi- ) Re
nal trajectory AV, only by a bounded amount, i.e.,
A (N, C) £ d*¥ (ref. Definition 3). Let us here
consider d*¥* as 0.08. Figure 3 outlines the behav-
iors of two trajectories for two different CESs, following the same stable (170)-constraint. The
trajectory following the CES 1110111010 (marked with green) remains within the safety envelope
of the nominal trajectory, whereas, the trajectory of another CES, 1000111111 (marked with red),
fails to abide by the safety criterion as the corresponding deviation crosses the safety bound d*¥¢.
This may lead to fatal consequences in safety-critical applications. The unsafe behavior mainly
arises due to the consecutive three deadline misses at the beginning for the second CES, leading to
diminished control performance. We propose a strategy that prudently avoids such consecutive
misses and we consider CESs that follow both stability and safety criteria (ref. Definitions 1,3).
Since this work aims to generate a stable and safe schedule for a set of n control tasks in a
uniprocessor system, hence for each task we ensure that the CES, following which the task is
scheduled, should always obey the underlying stability and safety criteria. We finally obtain a
feasible schedule for the n control tasks by minimizing the WCRT of each control task.

Fig. 3. Safe and unsafe state trajectories in MS

5 THE PROPOSED METHOD

We first formally define the problem statement and then discuss the proposed solution.
Problem Statement: For a set of n plant-control systems, given the following inputs: i) settling
time and output reference of each control system, ii) a set of n control tasks (corresponding to the n
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plant-control systems) in a uniprocessor system, each characterized by its sampling period, WCET
and safety bound; synthesize a feasible schedule of the tasks (if one exists), that ensures system’s
stability and safety over an infinite time horizon.

We solve the following two sub-problems to find a solution to the above problem.
Sub-problem 1: With the given set of inputs, determine a CES for each task that conforms with
the stability and safety criteria, i.e., it ensures that the closed loop is (I, €)-exponentially stable
(ref. Definition 1 for stability) and the system’s behavior under deadline misses, deviates from the
nominal behavior (with no deadline miss) only by a bounded amount (ref. Definition 3 for safety).
Sub-problem 2: Given the set of n CESs (comply with stability and safety criteria in Sub-problem
1) for the n control tasks as input, generate a feasible uniprocessor schedule (if one exists), that is
optimal w.r.t. WCRT while ensuring the system’s stability and safety over an infinite time horizon.

The proposed method consists of three

main steps. Figure 4 gives a synopsis of it, Step 1: Ensuring System's Stability (S;)

ShOWIHg how the three aSP?CtS’ Stablllty (51). (1, €) - exponential stability criterion — Minimum control

safety (S2) and schedulability (S3) are taken execution rate — Stable constraint — SASO constraint
3

into consideration in our work. Steps 1 and
2 propose a solution to Sub-problem 1, while
Step 3 offers a solution to Sub-problem 2. We
demonstrate each of these steps below.

Step 2: Ensuring Control Safety (S,)

1) SASO constraint — SASSO constraint — A safe CES
2) Guaranteeing safety till the infinite time horizon

Step 3: Safe and Stable Schedule Synthesis with SMT (S;)

5.1 Step 1: Ensuring System’s Stability ‘n’ safe CESs — SMT schedule till H — Repeat schedule till A —
Safe and stable schedule Sy

The first step is initiated with the concepts
and theory of stability (S;). We consider the Fig, 4. Stepwise summary of the method.

notion of (l’ e)—exponential Stabihty in this [SASO: Scheduling-Affable Stability-Oriented Constraint,

work. In order to exhibit its correlation with SASSO: Scheduling-Affable Stability-and-Safety-Oriented Constraint.]
the settling time [10], we proceed as follows.

As mentioned earlier, settling time is the required time by which the system’s output reaches and
remains around the reference value (e.g., within 5 % error band). It is analyzed using the system’s
step response, i.e., how quickly the system responds to a sudden change in the input and then
stabilizes towards the actual reference. Let x = (x1, X3, , x4) be the state vector. Without loss of
generality, we consider that in the presence of some external input or in an unsettled scenario, the
system may operate in a larger region ||x|| = ViTx < &s + 8, where 6 is the maximum amount of
deviation allowed in an unsettled situation. However, by the settling time, the operating region
must be confined only to ||x|| = VxTx < &;, i.e,, the operating region in the settled scenario is
ViTx < &s (I1.1]2 is referred to as ||.||). Here, &; is the radius of the reference region and it is
obtained from the output reference (the desired value that the system tries to achieve) as follows. Let
the output vector bey = (xq, x2, -+ , x,,), for some somew < g, and the output reference vector be

E= (&, &, -, &) Obeying the respective output references &;, & is chosen as \/Z;‘;l fiz. Note
that for the case of a single output variable (i.e., £ is a scalar), & is equal to the output reference &.

Now, we establish the (I, €)-exponential stability criterion (ref. Definition 1) from the settling
time, which is primarily motivated by [10]. We consider that the system evaluation starts (i.e.,
at time-point 0) in some perturbed/unsettled scenario. As the system reaches the desired output
reference within the settling time, hence, by the construction of &; as described above, the operating
region, ||x|| < &s, is reached from the region, ||x|| £ &; + &, within the settling time T, i.e., within
Ny, = [%] samples (h is the sampling period). This implies, ||x[Np]|| < &s with ||x[0]]] = & + &

(as initially the maximum value & + § is reached), and hence, % < gfj 5- Thus, we consider
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&
Es+d°
to work with a computationally viable quantity, Ny, is tuned by a constant, f > 1, and we set
t UXIN&lll o _&s

[Ix[o]ll = &+6
holds, we consider smaller intervals, like [0, I), [I, 2I), - -, to guarantee that, for some € < 1 (to

be determined), ”;{HH < e, I|I|J;[[ZII]III|I < €, etc. holds. This implies % < €. To ensure that

[1x[Ngp]ll & . . £ . . . .
||x[0}],|| < zis holds, we tune the damping ratio, Fas to obtain the modified damping ratio,
gs

1
€= ( 45 )/ . Note that ensuring this (I, €)-pair, the (Np, %)-stabﬂity criterion is automatically

the damping ratio as Based on the values of T and h, Nj, can be arbitrarily large, hence,

1= r%] Intuitively, rather than considering a larger length of N}, to ensure tha

satisfied, since (I, €) is much stricter than (Njp,
stability pair from the settling time.

Next we construct an (Alg )-ﬁrm constraint that conforms with the (I, €)-stability criterion. Let r be
the rate of successful control execution or the percentage of deadline hits over an infinite horizon and
it is derived as follows. If B is the minimum decay factor (a tuning parameter for the damping ratio
€), h is the sampling period, p is the spectral radius of a matrix and yo = p(As)?% x1 = p(Ans)?,

1
B = h;i;l) , then the inequality W < r £ 1holds [10]. The min value of r is %

;’fj 5)- This is how we derive the (I, €)-exponential

ExAMPLE 1. Let us consider a cruise control system, where the reference speed (output variable)
of the car is 25kmh™! (&) and the speed can increase to 70kmh™! (& + §) at maximum. If the
settling time (Ts) is 1s and the speed goes high (€ 70kmh™!), the cruise control should guarantee

that it decreases to 25 kmh™! within 1s, i.e., within Nj = [%'l = rO})is-l = 100 samples, assuming

h = 0.01s. As 100 is a large value, we select a smaller and feasible value likel = [%] = [%] =20

(with the tuning parameter f = 5). The modified damping ratio is € (fsiS 7= (%)% = 0.812,
and hence the norm ||x[k]|| decreases by a factor of 0.812 in every l = 20 sampling intervals. The

In (1
minimum decay factor is obtained as, f = I;)((;) = 1.044. For o = 1.007 and y; = 0.890, we obtain

B)n () = 0,753, Thus, 0.753 < r < 1 and min value of r is 0.753.

We set forth the next definition with the above expositions.

DEFINITION 4 (Stable Constraint). The (Alg)—ﬁrm constraint obtained from the (1, €)-stability crite-

rion is said to be a stable constraint, when M = [(%) XIllandK =1.

This clearly shows that allowing K — M execution skips in a sequence of K executions does not
inhibit the system’s stability. In Example 1, we obtain (;g) as the stable constraint for the cruise

i —nG) - — o~ 1h_ A llxlk+l]
control system. Since f = — 5=, as mentioned above, hence € = e -As S < € for every

k € N, as per the (I, €)-exponential stability criterion (ref. Definition 1), hence the norm ||x[k]||
tends to zero exponentially. Thus, the stable constraint (1\;{1) makes the system exponentially stable.

Since our work focuses on synthesizing a safe and stable schedule, we develop a strategy to quicken
the scheduling process, maintaining the underlying stability and enhancing the control performance
simultaneously, specifically by constructing another () from the stable (%)-constraint. The
parameter [ in the (I, €)-pair is generally large (in range 20-40) and working with such large values
of M and K (since K = I), becomes computationally intractable. For this, we construct another
(%) from the stable (Alg)-constraint, such that m divides M, k divides K and both m and k are
much smaller than M and K respectively. Let us consider the stable constraint, (AI;I ) = (;g) for the
cruise control system, as shown in Example 1. Let (',':) = (‘;) be the smaller constraint and p be a
CES corresponding to (‘;) If p is repeated 4 times, we obtain a CES of length 20 satisfying (;g),

since p obeys the (g)-constraint. Note that the (‘;)-constraint aids to the stability of the system
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by generating the stable constraint (;g), complying with the above argument. The construction of
such an (',':) helps in two ways, first by rendering smaller values of m and k (4 and 5 here), thereby
making the scheduling method time-efficient (discussed in Section 5.3). Secondly, it expunges
the case of consecutive 0s indicating the fact of continuous deadline misses which may increase
the chance of violating the safety criterion (crossing the bound d*¥¢) and diminish the control
performance. In our example, consecutive four 0s could occur in a CES following the (;g) constraint,

but this can never occur if the CES p is repeated 4 times. Keeping all these factors in mind, we

design this new (',:')-constraint and formally define it below.

DEFINITION 5 (Scheduling-Affable Stability-Oriented Constraint (SASO)). An (',i') -firm constraint

is called as SASO if it is obtained from the stable constraint (AI;I), such that, m and k are relatively
small divisors of M and K respectively.

As the SASO constraint makes the scheduling process time-efficient (ref. Section 5.3) and also
contributes to the system’s stability, hence we use the terms ‘scheduling-affable’ and ‘stability-
oriented’ in its nomenclature. The SASO constraint is an input to Step 2, as discussed next.

5.2 Step 2: Ensuring Control Safety

Now, we proceed to the second step of the method, which enforces control safety (S,) on top of
control stability. Considering a SASO constraint (’,’:) for a control system, we first examine whether
there exists a CES following that (',f) with exactly (k-m) execution skips, which satisfies the safe
bound d*¥®. This is done by checking whether the deviation between any such CES-based state
trajectory and the nominal trajectory A (ref. Eq. (3)), is less than or equal to d*¥. If such a CES
is found, then it is evident that this (') potentially contributes to the system’s safety. The term
‘potentially’ highlights the fact that at least one of the CESs conforming to that (',Z') satisfies the
safety bound but not all the CESs, hence, we may not declare the entire SASO constraint to be safe,
rather we define the next two terminologies based on these explanations.

DEFINITION 6 (Safe CES). A CES p is called as safe if its corresponding state trajectory C, de-
viates from the nominal trajectory N by an amount, that does not exceed the safe bound d*¥, i.e.,

A (N, Cp) < ds¥.

DEFINITION 7 (Scheduling-Affable Stability-and-Safety-Oriented Constraint (SASSO)). An (','C’)-ﬁrm
constraint is called as SASSO, if it is SASO and there exists at least one safe CES with exactlym 1sin a
length of k.

As (',f) denotes at least m deadline hits in a sequence of k consecutive control executions, thus
(f) always implies (',':), for any m < m’ < k. Therefore, if no safe CES with exactly m 1s in a
length of k is obtained, after probing through ¥C,, such CESs, we increase the number of 1s to

m + 1 and iterate the same process of safety verification with the (m,:' 1) constraint. Starting with

a SASO constraint (',':), continuing the same process with an increasing value of m, let (mk’) be
the constraint for which finally a safe CES with m’ 1s in a length of k is found. We then consider
('Z,) as a SASSO constraint. For example, the CES p = 11011 following the SASO constraint (g)
(obtained from the stable constraint (;g) in Example 1) obeys the safety bound, d*¥¢ = 0.06, for
the cruise control system, since its trajectory C, satisfies inequality A(N, Cp) < d*¥¢ (A() as in
Eq. (3)). Hence, 11011 is a safe CES and (g) is SASSO constraint. Herewith, we obtain a solution
to Sub-problem 1, because the safe CES obtained from a SASSO constraint, for each control task,
complies with both the stability and safety criteria.
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Now, we discuss our mathematical findings related to control safety. Eq. (3) states that the
safety verification is performed till the time horizon T, ensuring that the distance between the two
trajectories is lesser or equal to d*¥¢, for each j = 0 to T. In this regard, we try to address the
following three research questions.

Q1. Is the control safety requirement guaranteed merely till the time-point T or over an infinite time
horizon?

Q2. Is there any upper bound on the time horizon length for verifying the control safety (since we
cannot do it over an unbounded horizon)?

Q3. Can we obtain the exact time-point T, which is sufficient to guarantee control safety?

To answer Q1, we establish Theorem 1, where we

e

compute an upper bound on the deviation, A(N, C) —— [ Nominal Trajectory (GES: 1111)]

(ref. Eq. (3)), for any safe CES-based trajectory C and — [sawces R T CESETGeT )]

the nominal trajectory /. For example, as mentioned . S
above, the safe CES 11011 corresponds to the SASSO

constraint (g), which is deduced from the stable (AI;.I) = B e

(36) (ref. Example 1). Hence, I = K = 20 and the state T A A4 4

norm ||x|| reduces by a factor of € in every 20 sam- d,"d : dzod ; a5
pling intervals. We use this (I, €)-stability criterion to o s ) e

derive an upper bound on the distance between the two EEEd

trajectories, i.e., dis(N[j], C[j]), at each time-point j. S e e B e e
Finally, we prove that this upper bound tends to zero |_Time-points |

as time increases, hence the actual distance also ap-

proaches zero. This clarifies that both the trajectories Fig- 5. Distance d;* between the trajectories
merge and the corresponding deviation becomes zero ol =4 p =3

after some time, thereby establishing control safety over an infinite time horizon.

THEOREM 1. A safe CES p obtained from a SASSO constraint (','C') that conforms with the stability
and safety criteria, furnishes control safety over an infinite time horizon.

Proor. To prove the claim, we first express all the arguments till a finite time-point Ty,p = p X [,
for some p € N and the parameter I comes from the (I, €) pair. Next, we establish the control
safety till the infinite horizon. Let M and C,, respectively, be the nominal trajectory and a CES-
based trajectory for a safe CES p, with exactly m 1s in length k, where (',f) is a SASSO constraint.
Let x"[j] = (x2[jl, xj], -+ . x2 01} and x°[j] = {x¢[jL, x§0jL. -+ . xSLj1} € RY, represent the
respective state vectors for the two trajectories N and C, respectively, at the j-th time-point. Also,
the initial states of both the trajectories are equal, i.e., x"*[0] = x°[0]. Since, R is a metric space, at
any time-point j, the distance between N and C, is written in terms of the vector norms as,

q
dis(N[jl. CpljD) = Z(x,'}[j]—xf,[j])2= x0T =G < "G+ x0T (4)
v=1

Here, we introduce the notation d, such that, d;* = dis(NT[il + 7], Cp[il + 7]) represents
the distances at various time-points. For the time-points j = I,2l,-- -, ul, the distances are cal-
culated as d?,dj, « -, dg. Similarly, at time-points j = I+1, 2I+1, -+, (u-1)I+1, the distances are

1 g1 1
dl!dz, e ’d”_li
coe, (p=1)1+(1-1), d? becomes d{'l, dé’l, cee ,dL'll, respectively. Let us illustrate this by consid-
ering an example with I = 4. We represent the distances d} for p = 3 (say), i.e., up to the length
Tup = 31 = 12. Therefore, d? becomes d?, d), d at j = 4,8,12; dj,dj at j = 5,9; d?,d5 at j = 6, 10;

respectively. Continuing in this fashion, at time-points j = I+(I-1), 21+(I-1),
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and d;, d; at j = 7,11, respectively. Figure 5 clarifies the same. Note that the (I, €)-exponential

stability criterion in Definition 1 mentions that the norm of the state vector is reduced by a factor

of € in every I sampling intervals, i.e, % < ¢, for every k € N. Hence, to capture the

(1, €)-criterion on the distances d}, the length [ has to be reached at least. Using In-Eq. (4) and
Definition 1, we formally write the set of inequalities, for j =1, 2l,---, ul as follows.

dy = dis(NIIL, Cpll]) < |1 %" |1+ 11 x[ 1 < € (Il x™[0] 1] + 1] x°[0] |])
= 2e|| x"[0] ||  (as, x"[0] = x°[0]) .

dy = dis(N[21], Cpl21]) < || x"[21] 1 + 1 x°[21] | < e (1l ™[ 11+ 11 x°[1 1)
< (I x"[0] 11+ 11 x°[0] II ) = 2¢€*|| x"[0] |-
Proceeding likewise, we get,
d, = dis(N[pl], Cplpl]) < 2€"]| x"[0] || . ()

Similarly, we consider the time-points, j = I+1, 21+1, -+, (u-1) X I+1, and formulate another
series of in-equations, using the fact that, either x°[1] = A;x°[0] or x°[1] = A,,sx°[0] based
on there is/isn’t an execution skip. We assume without loss of generality that || Ans|| = || Al
Hence, for an execution skip,

di =dis(N[1+1], Cpll+1]) < [ x"[L+ 1] 1+ || x°[+ 1] || < € (Il x"[1] 1+ |1 x°[1] 1)

" ‘ wrot i1 AL 11 e
< € CARI I 2"T01 1+ AT ET0T 1) < € IAAnell Cl"10T 11+ 32 1 <01 1)
ns
- ; . R [N
<26 Al 11011l (sinee, [1Ansll 2 [1AI1 implies 1= < 1)
ns

For no execution skip, dj < € (|| Ans|| || x"[0] || + 1| Ans|| 1| x°[0] I ) = 2€ || Ans]| [| x™[0] ]] .

Thus, for both the cases of execution skip and no skip, we can state, d} < 2€ || Aysl| || x"[0] ||,
and with similar arguments, d} < 2€* || As|| || x™[0] || and finally,

dy_y < 2eH7H || Al | x™[0] ] - (6)
Generalizing the above pattern and using In-Eq. (5) and (6), we obtain,
d;” = dis(Nil + 1], Cplil +7]) < 2€’ [|Ansl|” [| x™[0] I] - ()

where, i = 1to p,fort =0andi=1to -1, for r = 1to I-1. If || A;]| = || Ansl|, then In-Eq. (7) is
modified as d,* < 2€|| A7 ||x"[0]]]. For very large values of p, i.e., when u — oo, as € < 1, the
factor € — 0 (the max value of i is u for T = 0 and p-1 for 7 = 1 to I-1). Hence, the distance dr
eventually approaches zero. This proves that trajectories M and C, merge after a time-point. O

In this fashion, we not only establish the safety till the infinite horizon but also obtain an upper
bound on the distance d,* using the (I, €)-exponential stability criterion. As, d,* has to be less than
d*¥° to ensure the control safety, this exhibits a correlation between safety and stability. Next, to
answer Q2, i.e., for obtaining the value of T3, we proceed as follows.

COROLLARY 1. The upper bound on the time horizon, for verifying that A(N, C) < d*¥ holds, is
In 2 1Al [lx"[01I1) = In @)] |
|In €] '

the time-point T,p, where T, is given by,
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Proor. Generally, || Aps|| > 1 and hence, || Ays||” increases for larger values of z, the largest
value being || A,s||'~! (as T < I-1). This shows, amongst the time-points, j = (u-1)I+1, (u-1)I1+2,
«++, (p-1)I+(I-1), the upper bound, on the distance d;* (from In-Eq. (7)), is maximum at the point
(p-1)1+(I-1), i.e., for d‘lll1 Though it is a loose upper bound, still we specify it to be less than the

given bound d*¥e in order to evaluate Typ. Following this, we write,

dsafe
&7 < 26 A "1 1] € @ = (u=1)xne < In )

2 || A1 [| x™[0] |]
2 || Aps 17 11x™[0]1] )
=

T [ @A lx(oll) = In (@] _
Int = |In el '

In (

=>@-1)2

At the start of the proof of Theorem 1, we initially considered the finite horizon T, = g % I for
any p € N. Now, using the above result, the min value of y becomes & and we set Ty, = a X I,
thereby completing the proof. O

Note that the value of T, is not the exact one, but rather a loose approximation of the time
length for the control safety verification. This is because the triangle inequalities (for norms) are
used to obtain the upper bound of In-Eq. (7). In practice, it is observed that the trajectories merge
much before T, = a X I, when the system is not in its transient phase, i.e., when it is closer to
the settling time. Yet, a key point here is that, T, is the maximum time-point for verifying the
control safety. It is absolutely superfluous to check beyond that and this is how we come up with a
theoretical upper bound on the time horizon length in Corollary 1. Nonetheless, we derive another
riveting result that helps in avoiding the safety verification till & X I and do it till the settling
time only. This leads to the answer to Q3. The upper bound in Corollary 1 is directly obtained
as a consequence of Theorem 1, correlating the stability and safety notions. Now, we establish a
connection between the control safety and the settling time to provide an exact value of the horizon
length, which is much less than & % I.

THEOREM 2. Settling time is the exact length of the time horizon for performing the safety verification,
i.e., to check whether the deviation A(N, C), between the nominal trajectory N and any CES-based
trajectory C, is less than the bound dsife,

Proor. When the system is in a settled and disturbance-free mode, i.e., for all time-points t > T,
where T is the settling time, it remains within the region VxTx < & (ref. Section 5.1). Since we
deduce the stable constraint (11‘(4) from the (I, €)-stability criterion, which in turn is derived using
the settling time and output reference values, hence, VxTx < & holds for all + > T and for all
trajectories corresponding to a stable constraint (11\;1)’ i.e., the nominal trajectory NV and also any

CES-based trajectory C following this (AI;.I) Let the corresponding state vectors for V and C be
x" = (x, x),eee x";) and x€ = (x7, x5, , x;) respectively. Without loss of generality, let the
output variable be the first variable of the state vector, i.e., output y(¢) = x'(t) = x7 (t) = &, Vt 2

Ts. Applying inequality Yx™(t)Tx"(t) < &, for N, we get,
q q q
DA S E >R Yy xS E D Y X ()P<0
i=1 i=2 i=2
=S x(t)=0, 2<i<gq, Vt2Ts (as, x{(t) = &) (8)

Similarly for C, Yx¢(t)Tx¢(t) < & implies x{(t) =0, 2 <i<q,Vt 2 Ts. Hence, the deviation
between N and C is actually zero after the settling time Ts. Similar arguments also work for
multiple output variables, i.e., for y(t) = (x1(¢), x2 (), , x(¢)), for somew < q.
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Also, it may be the case that the output is of the form y(¢) = {1x1(t) + §gx2 )+ + Twxw(t),
for some w < q and {; are given constants. Let the output reference be &, such that, the affine
hyperplane P : &1x1(t) + Loxa(t) + +++ + Lwxy(t) = & remains within the operating region
Vx(t)Tx(t) < & for all t > T, and for all trajectories following a stable constraint (AI'(I) Thus, for
all t 2 Ty, for any point (x4 (f), x2(t),+++ ,x,(t)) on P, the output y(t) reaches £,. We consider

the point (wfsgl s W§s§2 Jeee, wg—zw), which lies on $. Next, we ensure that the output variables x; (¢),

x3(t), +++, x4, (t), reach the references, wg—zl, wgzz Jeee, wfzw, respectively, for ¢ > Ts. This implies

that the output y(#) reaches the reference £, for t > T,. With similar equations like Eq. (8), xJ' (t) =
x{() = 2 (1) = x5 (0) = e (1) = x5, = S and (6 = x5, (1) = 0,0,

xg(t) = xg(t) = 0, forallt > Ts. Thus, A(N,C) =0 < d*¥e after the settling time Ts. O

With all the above deductions and findings, we conclude this phase and proceed next to construct
a schedule, which is safe and stable over an infinite time horizon.

5.3 Step 3: Construction of a Safe and Stable Schedule with SMT

Fully utilizing the processor bandwidth in a uniprocessor platform while considering a hard real-
time setting (i.e., when no execution skip/deadline miss is allowed), leads to a non-schedulable
situation more often. That is why the weakly hard real-time setting (allowing occasional deadline
misses) becomes a promising alternative for task scheduling. Having our focus on weakly hard
control systems, given the sampling periods and WCET as inputs, we construct a schedule for the
weakly hard control tasks guaranteeing the underlying stability and safety conditions. To generate
such a feasible schedule, we leverage formal methods, particularly the concept of Satisfiability
Modulo Theories (SMT), a widely used constraint-solving technique. More specifically, we formulate
an optimization problem to find a schedule that minimizes the worst-case response time (WCRT)
of control tasks. This propels the jobs to execute as soon as they arrive if there is a scope to do
so, and thereby increases the interval between the completion time and the absolute deadline of
the job. Such a way of scheduling facilitates other jobs to execute during idle time and obtain a
schedule even with very high processor utilization, which we show in Section 6.2 through extensive
experimental evaluation. Like the response time, there is another analogous parameter, named
lateness, which is either zero or negative for a feasible schedule. Larger negative values of the
lateness of a job instance signify that the job is scheduled much earlier than its deadline, hence,
minimized WCRT indicates the least value of lateness.

The scheduling problem is formulated as a set of constraints (clauses) and furnished to the SMT
solver (of type optimizer), which in turn returns a feasible schedule as the output if the set of
constraints is satisfiable. All such constraints are listed below, along with their descriptions. For
the j-th job of the i-th task, the four parameters, namely, arrival time (a;;), sampling period (h; ),
WCET (c;;) and relative deadline (d; ) are the given inputs (ref. Section 3.5) and the parameters,
start time (st; j), finish time (fin; ;) and response time (res; ;), are determined by the solver in order
to generate the feasible schedule.

Input to the SMT-Optimizer: Sampling period h;, WCET c; of task 73, i = 1 to n (ref. Section 3.5)
and the set of n safe CESs coupled with the corresponding SASSO constraints.

Output from the SMT-Optimizer: A feasible schedule.

Feasibility-Related Constraints: For a CES with m 1s in a length of k, the m 1s indicate m job
instances and we schedule each such job instance. For a schedulable job, the feasibility conditions
are, that its start time must succeed its arrival time (L), the finish time must precede its absolute
deadline (£;) and the difference between the finish and start time must be equal to its WCET (L3).
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For example, let p = 1011 is a CES specifying a control task 7; with a sampling period and WCET
as 4ms and 2 ms respectively. Following p, the three job instances arrive at the first, third and
fourth sampling instants. The second job arrives at the third sampling instant, i.e., at # = 8 ms
(since the first job arrives at + = 0 ms). Thus its parameters, a; 2, h; 2, ¢i2 and a; 2 + d; 2 are equal
to 8 ms, 4ms, 2 ms and 12 ms respectively. Hence, it should begin execution after ¢+ = 8 ms, execute
for 2 ms and finish before # = 12 ms. The three constraints below describe the above explanation.

L4 istij 2 a;;, Lg:finiJSaiJ+d,-,j, ngfini,j—stiJ=ci,j.

Response Time-Related Constraints: For a feasible schedule, WCRT(77;)= max;ej(7;) resij < d;
must hold (ref. Section 3.5). Since, for any j-th job € J(7;), d;; = d;, thus the schedule is feasible
if the response time of each job is less than or equal to its deadline. For the j-th job of task 773, the
related constraints are,

L4:res,~J =finiJ—ai,j, L5 :OSresi,j Sdi,j-

The lateness of the j-th job of task 77 is defined as, late; ; = fin;j— (a;;+d; ;). Clearly, it is either
zero or a negative quantity following constraint L.

Conflict Removing Constraints: For any two job instances [ Fin, S, Fin,
Jj1 and j, of two different control tasks, their execution in- i j
tervals should be disjoint, since, exactly one job instance can | *** L £ Ty
be scheduled at a time-point, in a uniprocessor system. All Leftahartal Overiap: S| UK Eatal Ovarap

possible cases of overlaps between j; and j2, (ref. Figure 6), X i i

are outlined below as: left partial overlap (Ls), right partial I [

overlap (L) and the full overlap (Ls). These instances are Full Overlap (j, within j,)

avoided by the solver to remove the conflicts between two

jobs, hence we write constraints in negation. Fig. 6. Overlaps between jobs ji and j2

L NOt(Stjl < St'j2 < finjl ), L NOt(Stjl < finjz < finjl), Ls :NOt(Stj2 < Stjl,fl'i’lj1 < finjz)

Objective Function for Optimization: For each task 73,1 < i < n, WCRT(7;) = max;cj(7;) resi;
is to be minimized to generate the schedule and this is formally expressed as follows.
Ly : Minimize max res;;.
i=1ton
Jj € J(71)
Here, J denotes the set of jobs of a task. The entire set of constraints provided to the solver is
the consolidated formula of the form of L, given as follows,

L=| A A .Ey) ( AN Ly A L.
1<i<n jeJ(77) 1575 1 €J(Ty), Jo €](T), in<ip 65y<8

Here, the first term encompasses constraints £, — L5, for all job instances of each task in the set
T = {71, T3,+++ , Tn}. The second term exhibits the constraints, L — Lsg, for each pair of jobs j;
and j,, belonging to two different tasks 7;, and 75, respectively. We eliminate the redundancy
of checking the same set of constraints twice, for the pairs (jq, j2) and (jz, j1), hence we add the
condition iy < iy. The last term indicates the optimization constraint L. If L is satisfiable, then
the SMT-optimizer reports a feasible schedule.

We generate the schedule Sy till a finite time-point, H = lemj<;<n (ki X h;) where, (';C"') and h;
are the SASSO constraints and the sampling period of the i-th control task respectively. Since, each
pattern p; repeats after a length of k;, it occurs an integer number of times within the horizon H.
Recall that a SASSO constraint ('"k') ensures the control safety over its underlying SASO constraint,
which in turn is generated from a stable constraint (AI'(I) for enhancing the time complexity of the
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scheduling method, without compromising the stability. Also, this SASO constraint is a special
case of the stable constraint, by construction. Therefore, to ensure both the safety and stability
of a schedule, we should not restrict ourselves to consider the schedule Sy till H only, rather we
should proceed towards H > H, where the length K of the stable constraint (AI'(I) is confirmed to be
reached (since, the system norm reduces by the damping factor € after every I sampling intervals
by Definition 1 and K = ). This holds true for all the n control systems. Consequently, to acquire a
safe and stable schedule, we consider the larger horizon, or the hyper-period H = lem; < i<, (K; X h;),
which is some multiple of H, say by. The schedule S, obtained till H, is both safe and stable over
an infinite time horizon, and it is just by many repetitions of Sy. Thus, the construction of the
schedule till H suffices to obtain Sg. Basically, we schedule a smaller number of job instances till
the length H and precisely by replicating this ordering of the jobs, a larger number of job instances
are actually scheduled over the larger length H. This simultaneously makes the scheduling process
faster and offers room to work with multiple tasks and job instances, which we also showcase
through experimental evaluation. Apart from increasing the control performance (in comparison
to that of a stable constraint (AI;I)) the SASO constraints aid to the efficiency of the scheduling
mechanism, in the above way. The obtained schedule Sy is optimal w.r.t. WCRT and also ensures
the system’s safety and stability over an infinite time horizon, thereby it furnishes a solution to
Sub-problem 2. This wraps up the entire methodology and next, we substantiate the scalability and
the efficiency of our proposed method, with some experimental observations.

6 EXPERIMENTAL RESULTS

This section describes the experimental details, along with the results and analysis, to establish
the efficacy of the proposed method. At first, we delineate the proposed method using a case
study considering 5 benchmark control systems from the automotive domain. Next, we expand on
the scalability analysis of the proposed technique by considering 15 benchmark control systems,
followed by the experimental comparison with the state-of-the-art works. Our objective is to
demonstrate that the proposed method offers improved schedulability with a lower runtime, while
ensuring the underlying stability and safety. Such features are accomplished by the proposed
method specifically due to the following two factors: i) minimized WCRT while scheduling, and ii)
pruned SMT search space to a large extent with the safe CESs obtained from the SASSO constraints.
All the experiments described are carried out on a 64-bit Windows OS in a 2.10 GHz Intel Core-i5
machine, with 32 GB of RAM and we use MATLAB version R2020a and Z3 SMT solver [18] with
Python API for the experiments.

6.1 Working Execution of the Proposed Method

For this experiment, the control systems considered are, a second-order DC motor speed (MS)
control, a third-order cruise control (CC), a fourth-order suspension control (SC), a second-order
resistor-capacitor network (RC) and a second-order lane-following controller for an FI-tenth model
car (F1) that adjusts the steering angle [25]. The inputs to our method, viz., the system dynamics,
sampling period (h), WCET (c), settling time (Ts), reference value (&;), maximum deviation (&)
(ref. Section 5.1), safety bound (d*%¢), are mentioned in Columns 2-8 of Table 1, respectively. If we
consider a hard real-time setting, i.e., all jobs of all the tasks meet their respective deadlines, then by
using the data of Columns 3 and 4, the utilization value would resultin, U = ;< ;<5 ;—: =117>1
leaving some tasks unscheduled. Thus, a few execution skips are required to schedule the jobs
in a uniprocessor system and this is one rationale for considering the weakly hard task setting.
Hence, for this task setup, we need to formulate the corresponding weakly hard constraints. With
the inputs in Columns 3-7, the (I, €)-pair and the control execution rate r are first calculated
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(ref. Section 5.1) to generate the stable (%) constraint (ref. Definition 4). Subsequently, following

Definitions 5, 7 and 6, the SASO (',;’ ), the SASSO (",:,) constraints and the safe CES p (using d*%*
in Column 8 for the last two parameters) are evaluated, respectively. Columns 9-13 of Table 1
report all these parameters, which are computed in less than 1 ms, since obtaining stable and SASO
constraints are constant time actions and the safety checking for *C,,, many CESs, corresponding
to an (',':), takes minimal amount of time for small values of m and k. The deviation between the
nominal and CES-based trajectories is computed for multiple initial states (8-10 random points on
the unit circle). The one leading to the minimum deviation is selected.

1 2 3 4 5 6 7 8 9 10 1 12 13
i 7
Plant System Dynamics h(ms) | c(ms) | Ts(s) | & ) dsfe (L, e) ( K) ( ':) ( ': ) P
A=[06500] 10 2 2
F1 20 4 0.3 0.1 0.04 0.56 (15, 0.7143) ( ) ( ) ( ) 101
B = [0; 19.685], C=[10] 15 3) 3
A=[0100;-8-484;000 1; 80 40 -160 -60] 15 3 3
SC 15 3 0.3 2 1.717 0.8 (20, 0.7361) ( ) ( ) ( ) 0111
B = [0; 80; 20; -1120], C = [1000] 20 4 4
A=[010;00 1;-6.0476 -5.2826 -0.238 25 5 5
CcC ( ] 10 2 12 30 75.5 0.06 (30, 0.7302) ( ) ( ) ( ) 101111
B =[0;0;2.4767], C=[100] 30 6 6
A=[-101;-0.02-2] 10 2 2
MS 20 5 0.6 0.1 0.101 0.1 (15, 0.7053) ( ) ( ) ( ) 101
B=[0;2], C=[10] 15 3 3
A=[-6102-0.7 12 3 3
RC L ! 15 4 1.0 0.5 1.8 0.07 (16, 0.7452) ( ) ( ) ( ) 1011
B = [5;05],C = [10] 16 4 4

Table 1. Input and output parameters of the control systems

Here, the horizon of the schedule, H = lcm 1 <;<5{k;ixh;} and the hyper-period H = lem 1< ;<5{Kix
h;} are equal to 60 and 1200 respectively. The synthesized schedule Sgo has 15 job instances and
since the safe and stable schedule Sy5¢0 is just 20 repetitions of Sg9, hence, 300 job instances occur in

total in Sy290. On receiving the input tuples {(h;, c;, (':l') Pi)}?zl’ the solver synthesizes Sg, which
has an average lateness value of -8.067 (average over the lateness values of all the 15 jobs), ensuring
that all the five tasks (specified by the SASSO constraints) are schedulable. The total time taken to

obtain the schedule Sgo (or S1299) is 0.08 s.

CASE 1: 5 plants: (CC, MS, F1,SC, RC) CASE 2: 7 plants: (CC, MS, LC, F1,SC, RC, TTC)
H=60, Jy=15, H = 1200, J; = 300 H=60,Jy=21, H =1800, J; = 630
Util. range 0.7-08 0.8-0.9 09-1.0 Util. range 0.7-08 08-09 09-1.0
Actual Util. 0.73 0.76 0.80 0.82 0.9 0.93 Actual Util. 0.75 0.78 0.82 0.87 0.93 1.0
Min. Time (s) 0.120 0.100 0.100 0.070 Not Min. Time (s) 0.481 0.421 0.343 0.450 2.094 4.097
Avg. Time (s) 0.126 0.108 0.118 0.080 Schedulable Avg. Time (s) 0.55 0.448 0.552 0.494 2.582 6.058
CASE 3: 9 plants: (RC, SC, LC, F1, CASE 4: 11 plants: (DCS, RC, LC, SC,
CC, MS1, TTC, VDC, MS2) F1, CC, LK, MS1, TTC, VDC, MS2 )
H =60, Jy=23, H = 37,800, J; = 14,490 H =60, Jy=29, H = 37,800, J; = 18,270
Util. range 0.7-0.8 0.8-0.9 09-1.0 Util. range 0.7-08 0.8-09 09-1.0
[ Actual Util. [ 0.70 0.75 [ 0.80 0.88 0.93 0.97 Actual Util. [ 0.73 0.78 0.82 0.87 0.90 0.98
Min. Time (s)  0.030 0.334 0.578 1.438 1.969 3.201 Min. Time (s) 1515 3.578 8.312 12.031 91.594 161.031
Avg. Time (s) 0.070 0.350 0.724 1.604 2.1615 3.556 Avg. Time (s) 1.547 3.620 8.328 12.219 92.724 161.836
CASE 5: 13 plants: (DCS, RC, LC, SC, F1, CASE 6: 15 plants: (DCS, RC, LC, SC, F1-1, CC, LK,
CC, LK1, MS1, TTC, VDC, MS2, ACC, LK2) MS1, TTC, VDC, MS2, ACC, LK2,SC2, F1-2)
H =60, Ju=33, H = 37,800, J; = 20,790 H =60, Jz=37, H = 75,600, J; = 46,620
Util. range 0.7-08 0.8-09 0.9-1.0 Util. range 0.7-0.8 0.8-0.9 0.9-1.0
Actual Util. 0.72 0.77 0.82 0.87 0.92 0.97 Actual Util. 0.72 0.77 0.83 0.87 0.92 0.96
Min. Time (s) 15.781 | 29.907 30.234 | 63.422 | 102.172  399.421 | Min. Time (s) 478.125 | 661.719 | 2075.531 4235.438 | 7568.125 >3 hrs
Avg. Time (s) 16.167 | 30.537 32.867 | 63.953 | 102.610 400.053 | Avg. Time (s) 485.305 | 669.047 | 2230.242 4261.399 | 8517.031 | Timed out

Table 2. Total runtime for various configurations of plants and corresponding task utilization
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6.2 Scalability Analysis of the Proposed Method

In order to demonstrate the scalability and the real-world applicability of the proposed method,
we carried out the experiments as mentioned above by increasing the number of plants and the
corresponding control tasks. Some other benchmarks considered here are, a fifth-order vision-based
lateral control (LC) system [9], a second-order vehicle dynamic controller (VDC), a second-order
trajectory tracking controller (TTC) [1], a fifth-order lane keeping (LK) system, a third-order adaptive
cruise control (ACC) and a second-order DC-servo (DCS) control system (supplement of [7]).
Objective: Here, we examine how the fotal runtime of the proposed method varies for different
values of the total processor utilization, for various configurations of plant-control systems.
Design of the Experiment: We set up six cases by considering various numbers of plant-control
systems, and for each such case, we devise several sub-cases by varying the total utilization (obtained
via altering the input parameter WCET of the tasks). Table 2 reports the entire data set for the
above cases. To get various plant options, in some instances the same system is considered with
different sampling periods, e.g., MS-1 and MS-2. The number of jobs scheduled till horizons H and
H are denoted as Ji and J 4 respectively. We report both the minimum (Min. time) and average
(Avg. Time) time (for multiple runs) to synthesize the safe and stable schedule, for different total
utilization values (Actual Util. = 31 <;<,, %) in the range of [0.6-1.0] (Util. Range). Being an
offline scheduling mechanism, for the proposed method, we fix a time-out value of 3 hours after
which we declare the set of tasks to be non-schedulable in the processor.

Observations: We conclude the following points from the above experiment.

i) The number of jobs in H, i.e., J;, is remarkably large for a higher number of plants, especially
for Cases 3-6. Moreover, the WCRT minimization facilitates obtaining a schedule, regardless of
very high utilization values (e.g., 0.93-1), in almost all the cases.

ii) It is also worth noting that the time taken to generate the schedule is fairly less for all utilization
values in Cases 1-3, and for Actual Util. < 0.9 in Case 4. Almost for all task and utilization
configurations, except Case 6, the average time is much less than 1 h; the highest is around 7 min
for the utilization of 0.97 in Case 5. With 15 plants, in Case 6, the schedules are synthesized
within a reasonable time (in the range of 7 min-38 min) up to the Actual Util. < 0.85. For Actual
Util. > 0.85, we too can obtain the schedule by fixing the time-out a little higher.

This proves that the proposed method, despite of considering a higher number of control tasks

(corresponding to the plant-control systems) and job instances, can still report a feasible schedule

in a fairly reasonable time while utilizing the processor bandwidth as much as possible.

Improved Schedulability: We know that for a feasi- 0
ble schedule, the lateness should be either negative or

-4

8

0

zero, and for an infeasible schedule, the lateness value
becomes a positive quantity. A higher negative value
of the lateness signifies that the jobs are scheduled

H°
H 2

X 7
2 S

Avergae Lateness
o

as soon as they arrive if there are empty slots to do o 288 g8 ~
so. This indicates a lesser WCRT, which is the objec- g °° s ° B 3
tive function of our underlying optimization problem. " 3
Specifically, this improves the scope of schedulability T S piants 7 plants 9 plants

in our method and thus it can schedule a large number
of job instances at higher processor utilization values.
With an increase in the total utilization, the number of such empty slots decreases and the lateness
increases, becoming less negative. The average lateness for various sub-cases of Cases 1-3 in Table
2, is shown in Figure 7. We achieve feasible schedules with a minimized WCRT, which is distinctly

Fig. 7. Average lateness vs utilization
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justified in the figure in terms of negative average lateness. The respective utilization values are
mentioned on top of all the bar graphs.

6.3 Comparison with the Existing Methods

Since in this work, we leverage formal methods for synthesizing the safe and stable schedule, we
refer to our proposed method as FMSS, in the rest of the paper. As our focus, in this work, is on
the triplet, (Sy: stability, Sy: safety, Ss: schedulability), we conduct the following set of rigorous
experimental comparisons with the state-of-the-art methods exploring all these three aspects,
specifically emphasizing the schedulability (S3) aspect. As mentioned earlier, the literature lacks any
existing method that focuses on Sy, Sz, and S3 simultaneously, unlike our proposed one, therefore,
we can mostly compare existing methods considering one (two) aspect(s) at a time.

(1) Comparison focusing on S, S3: The closest works that also consider stability and schedula-
bility together in the same context is [10]. Like [10], we consider the exponential stability criterion,
but we take into account control safety to construct a safe and stable schedule, minimizing WCRT.
On the other hand, [10] solves an ILP to generate a Pattern Guided Stable schedule, using EDF as
the underlying scheduling algorithm, but has not addressed safety analysis. We name their method
as PGS and compare with it, to prove that PGS not only lacks control safety but also falls short of
our standards, in regards to other metrics too.

A. Comparing FMSS with PGS w.r.t. Schedulability (S ):

Objective: To highlight the efficiency of ‘

Time (s) taken

by FMSS

Time (s) taken by PGS Time (s) taken by PGS

n ‘ Util. ‘ with stable constraints | with SASO constraints

FMSS, we compare it with PGS in terms
0.76 0.100 80.625 0.456
0.82 0.070 207.547 1.344

5
of schedulability and the total runtime | s

7 0.78 0.421 10.234 0.100
to generate the schedule. 7 | 0s2-10 v > 1h (Timed Out)
Design of the Experiment: This com- | ] | 7 s 26219 Y

0.72 - 0.97 v > 1 h (Timed Out) X

parison is carried out by providing two [ 11 [ 072-0.98 5 > 1h (Timed Out) §
: . . 13 | 0.72-0.92 > 1h (Timed Out)

different types of inputs to PGS: a) n 077 085 e b (Timed o) ><

15

stable (}4) constraints, and b) n SASO Table 3. Comparing FMSS with the existing method PGS
constraints for n plant-control systems,

as exhibited in Columns 4 and 5 in Table 3 respectively. In [10], PGS considers n stable (1}(4) con-
straints as inputs to generate a feasible schedule. Note that the setup with SASO constraints is not
a part of PGS, rather we have designed the SASO in FMSS to generate a feasible schedule faster,
along with enhancing the control performance. Since FMSS considers SASSO constraints (derived
from SASO constraints) as inputs, hence, we also examine the schedulability of PGS with SASO
constraints as inputs (SASSO cannot be an input to PGS, since it is deduced based on the safety
criterion and safety analysis is not addressed by PGS in [10]). The v// X marks in Columns 3 and 5
denote the cases where a schedule could/couldn’t be synthesized by FMSS and PGS, respectively.
Observations: FMSS considerably outperforms PGS both w.r.t. the runtime and schedulability.

i) We observe that with stable (Alg) constraints as inputs, PGS fails to report a schedule within
an hour (time-out taken as 1 h), even for utilization values close to 0.72, for 9 plants or
higher (Column 4). In contrast, FMSS reports a feasible schedule within 0.03s-0.5s in such
cases (Column 3). This mainly motivates us to construct another case by selecting the SASO
constraints as inputs, which we follow in our proposed method to work with a smaller subset.

ii) The consideration of SASO constraints results in a smaller input space for the ILP in PGS. If
(;g) is a stable constraint, then for any CES following the SASO (g) if repeated to a length of

30, forms a subset of the collection of 3°Cyg different CESs, obtained from (;g) With this setup,
the runtime of PGS improves considerably; for all the cases it takes nearly equal or a little
higher runtime than our FMSS method, as shown in Column 5. Yet, in the majority of the cases,
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for increasing plant numbers and the corresponding task utilization values around the range
(0.72 — 1), PGS fails to report a feasible schedule, declaring the tasks to be non-schedulable by
EDF. In contrast, FMSS guarantees schedulability with utilization up to 95%, on average, for all
these cases (the runtime detail for each individual case is reported in Table 2). Therefore, the
construction of the SASO and minimization of the WCRT in FMSS is substantial, and clearly
[10] fails to provide better schedulability with a smaller runtime.

B. Comparing FMSS with PGS w.r.t. Safety (S;):

Objective: Since control safety is not addressed by PGS in [10], we compare w.r.t. the metric, safety,
by exhibiting the violation of the safety bound, d*¥*, in PGS in certain cases, as opposed to ours.

Observations: A schedule generated for a set of five

tasks turns out to be unsafein the case of PGS, as for one e

of the systems, F1-tenth model car, the state trajectory | Farcs (1001 1000
obtained by following the underlying CES 1101011010 gz [
generated by the ILP solver, deviates from the nominal
trajectory (when execution skip is not allowed), by a
value (0.714) more than d*¥ (0.56). On the other hand,
FMSS generates the safe CES as 10011, which when
repeated to a length of 10, forms a stable and safe CES 0 0 o0 1e0 o0 200 200 200 330 300 400
1001110011. With this CES the respective deviation sampling i e ot20ms

from the nominal trajectory is a maximum of 0.462.

Figure 8 explains this pictorially, where the deviation  Fig 8. Comparing control safety with PGS

at each sampling instant (multiples of 20 ms) is shown

for both the methods.

This clarifies that the proposed method FMSS, surpasses PGS in terms of the metrics: schedula-
bility, total runtime and control safety.

(2) Comparison focusing on Sy, S5: The closest existing methods that consider control safety
and schedulability aspects together for a weakly hard setting are [23] and [25]. Though these
methods consider the same notion of control safety as ours, they do not account for stability in
their works. Therefore, we compare FMSS and [23, 25] w.r.t. control stability (S;) and schedulability
(Ss3) (specifically, in terms of the runtime to generate a safe schedule). The work in [23] develops
the concept of Safe Constraint Synthesis to generate a safe schedule. The method described in
[25] accounts for Deterministic verification of a schedule that is constructed with safe constraints,
obtained through a probabilistic method named Statistical Hypothesis Testing (SHT) [8]. Based on
their underlying methodical structures, we refer to these methods as SCS and DSHT, respectively.
Both these methods have the limitation of ensuring control safety over an infinite time horizon
and additionally consider an automata-based construction of schedulers that also rely on equal
sampling periods for all the control tasks, making the real-world application space restricted. FMSS
overcomes both these limitations while guaranteeing the desired stability of the systems.

A. Comparing FMSS with DSHT and SCS w.r.t. Stability (S,):

Objective: We compare w.r.t. stability to highlight the fact that, even though the safe constraint
synthesis ensures a minimum deviation from the ideal behavior (i.e., the nominal state trajectory),
but the underlying systems can still remain unstable.

Design of the Experiment: We consider cruise control (CC) and suspension control (SC) systems
for this comparative experiment. The controllers for CC and SC are designed using the LQR
technique with a sampling period of 20 ms, as chosen in SCS and DSHT. For plant CC, DSHT
reports (é) as safe and both SCS and DSHT declare (;) to be safe. However, FMSS states (2) and (g)
as the SASSOs and 111011 and 11010 as the safe CESs, for lengths 6 and 5 respectively. Similarly,

o
o

Deviation from the
Nominal Trajectory
1N
S

o
[
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for plant SC, according to DSHT, the constraints (;), (2) are safe, and according to both DSHT and
SCS, (g), (2) are safe (as reported in [23, 25]). With FMSS, we get (2) and (g) as SASSOs and 111011
and 11011 as safe CESs. For this experiment, we choose the CES for an (',Z') provided by DSHT and
SCS, which is the one amongst all possible combinations that gives the best output response.
Observations: On experimenting over the CC and SC systems, we observe noticeable differences
in their output responses while selecting a safe constraint for state evolution, in contrast to the
selection of a safe CES corresponding to our SASSO constraint derived from a stable constraint.
Even with the best CES, the safe constraints of DSHT and SCS fail to ensure stability, in most cases.
i) For plant CC, Figure 9a portrays this observation for both the cases of length 5 (plots in the top
with a reference of 50 km h™!) and length 6 (plots in the bottom with a reference of 20kmh™?).
It is worth mentioning that the settling time achieved for the constraint (;) returned by both
SCS and DSHT (top, red) is 4 s, whereas for (Z) as returned by FMSS (top, blue), the settling
time becomes 0.8 s only. In this case, the reference is considered as 50 km h~! and marked in
the plot in Figure 9a. On the other side, for (é) as returned by DSHT, the system doesn’t settle
(bottom, red) at all, while in contrast, for (2) in FMSS the system settles within 1 s (bottom,
blue). In this case, the reference is 20 km h™!. Hence, FMSS offers 80% and 100% improvements
in the settling time respectively.

ii) For plant SC, considering constraint (;) as returned by DSHT, the system shows extremely
inconsistent and unstable behavior (ref. Figure 9b), with an overshoot in the range 10'?m, when
its reference is 2 m. Also, with (2) (reported by DSHT) the system becomes highly unstable
(ref. Figure 9c, bottom, red). Although the system settles for constraints (g) (top, red), (2)
(bottom, blue), as returned by DSHT and SCS, the settling times are 2.5 s and 0.5 s respectively.
In contrast, for (g) (top, black), (2) (bottom, black), as reported by FMSS, the system settles at
0.2s and 0.1 s respectively. With this, there is an improvement of 92% and 80% respectively, in
FMSS, for plant SC.

Stability plays a pivotal role in designing efficient control systems and FMSS excels considerably in
regard to this metric.

: 11011 (FMSS)

2): 11000 (SCS, DSHT)
4
5

10 T
60 kS E
50 Aff TS ,'“‘ —— e A R —
H i ey
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Fig. 9. Comparing output responses with unstable systems of SCS and DSHT

B. Comparing FMSS with DSHT and SCS w.r.t. Schedulability (S;):
Objective: Here, we compare with the DSHT and SCS methods w.r.t. metric, total runtime required
to generate a safe schedule, to point out the efficiency of FMSS.
Design of the Experiment: For this comparison, we take the same set-up of 5 plants (ref. Table
1) as considered in [23, 25]. The only change we add is that we allow the sampling periods to be
different since we do not have any restriction to consider them equal, as opposed to [23, 25].
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Observations: As per the data reported in [25], the total time required to obtain a safe schedule by
DSHT and SCS is 13.5 s and 748.37 s, respectively. In contrast, despite considering the same set-up
for 5 plants (ref. Table 1), FMSS takes only 0.08 s to report the schedule, offering an improvement
of nearly 99.41% and 100% in runtime respectively. Moreover, unlike FMSS, for these methods,
dealing with a higher number of plants would be a practical challenge because of their heavy-
duty computations; specifically, the reachability analysis and the iterative execution of the SHT
framework (counter-example guided refinement on not obtaining a safe schedule). Also, the iterative
process of synthesizing safe (';:)s by calculating the upper bound on the deviation with the bounded-
tree algorithm [15], makes the complexity even worse in SCS. These justifications point to an
exponential time rise in the runtime for these methods, with an increasing number of plants and the
corresponding tasks. Hence, FMSS is undoubtedly superior and efficient in comparison with [23, 25],
also, it is quite comprehensible from the scalability analysis study reported in Table 2 of Section 6.2
(this type of scalability analysis with a higher number of plants is not reported in [23, 25]).

(3) Comparative Comments on Other Works: The only recent work that considers the SMT-
based approach for generating safe schedules for weakly hard control systems is [26]. Here, the
authors use refinements to reiterate the process of constraint solving, on obtaining a spurious trace,
until a safe schedule is observed. Instead, FMSS aims to generate a safe schedule in exactly one
iteration if it exists, which makes FMSS more effective. For a set-up of 4 control tasks, [26] reports
the runtime and memory consumption as 40 s and 48 MB for the hold-and-kill policy (that we too
consider, ref. Section 3.3) using Z3 solver; while with FMSS, Z3 generates the schedule in 0.04 s
having a 20 MB memory requirement, for a 4-task setup. Since the safety notion considered in [26]
is completely different from ours, there is no scope for fair comparison w.r.t. this aspect. Moreover,
as reported in [26], their work is limited to medium-sized systems; we anticipate that [26] may
suffer from higher time-complexity and memory consumption (due to the iterative refinement
process) issues while dealing with a higher number of systems simultaneously, as opposed to ours.

7 CONCLUSION AND FUTURE DIRECTIONS

This work proposes a novel approach for generating a safe and stable schedule for a set of weakly
hard control tasks preserving the desired control stability and safety guarantee. To the best of our
knowledge, this is the first work which addresses the triplet, (stability, safety, schedulability), in
the real-time control context. The state-of-the-art methods have studied either stability or safety
but not both the aspects with a harmony of real-time scheduling of control tasks. To this end, we
develop a scheduler, which even though permits tasks to miss some of their deadlines intermittently,
we still do not allow the underlying stability and safety to be compromised. Moreover, we establish
the control safety over an infinite time horizon, unlike some previous methods that consider a
bounded time horizon. To synthesize the schedule, we develop an SMT-based scheduling approach
which minimizes the worst-case response time. In contrast to existing methods, the SMT-based
approach proves itself to be time-efficient in our work. This is because we reduce the search space
of the SMT solver by selecting exactly one deadline hit-miss pattern for a task, which conforms to
a weakly hard constraint obeying both the stability and safety criteria. Additionally, with some
rigorous case studies, we demonstrate the scalability of the proposed method and its efficiency in
comparison to some existing methods, which have addressed either stability or safety. Dealing with
both stability and safety for scheduling in non-linear control systems could be an interesting next
step of this work. Moreover, establishing efficient techniques to generate an SMT-based schedule in
a reasonable time frame for a significantly large number of control tasks, is also an essential aspect
to explore in the near future. Another riveting future direction could be considering dependencies
in the task model while designing a safe and stable schedule.
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