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Real-time scheduling of multiple control tasks in a weakly hard setting is an emerging research direction, as it

offers a more flexible and feasible environment for task scheduling. This is especially pertinent for resource-

constrained embedded applications where tasks are allowed to miss a few deadlines for prudent sharing

of computational resources. However, a control task missing its deadline could result in the system being

unsafe or unstable. A significant amount of research efforts have been reported in the literature addressing

the schedulability of control tasks while preserving the stability or safety. However, all of them focus on a

stable schedule or a safe schedule, but not both the safety and stability aspects together. In this work, we

ensure both control stability and safety to generate a safe and stable schedule for a weakly hard task system.

In particular, we gradually endorse stability, safety, and schedulability, where we first synthesize a weakly

hard constraint that preserves the desired stability of each control task. Next, we correlate stability with

control safety and establish some mathematical results that guarantee control safety for an unbounded time

horizon, unlike the existing methods. Finally, by leveraging Satisfiability Modulo Theories (SMT), we synthesize
the schedule that ensures control stability and safety while minimizing the worst-case response time of all
the tasks, in a time-efficient way. To our knowledge, this is the first work to address stability, safety, and
schedulability together for weakly hard task systems. We validate our method through extensive experiments

using standard automotive benchmarks. In addition, we demonstrate the efficiency of the proposed method in

comparison with some of the state-of-the-art techniques, as well as highlight its scalability, thereby establishing

its applicability in real-world scenarios.

CCS Concepts: •Computer systems organization→ Embedded and cyber-physical systems; Embedded
software; • Software and its engineering→ Real-time schedulability.
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1 INTRODUCTION
Real-time task scheduling is one of the most prominent areas of research under the domain of

embedded and cyber-physical systems [2, 12, 21]. Any real-time task has a hard real-time requirement
∗
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to complete its execution before its deadline to ensure the system’s functionality. However, such

hard requirement often leads to situations, where the resources can no longer be appropriately

shared among the tasks, leading to an infeasible schedule of tasks in the shared processor. To

improve the schedulability and resource allocation among multiple tasks, especially for resource-

constrained embedded environments, recent design trends advocate migrating to a weakly hard
setting [3]. Here the tasks can miss some of their deadlines occasionally, without hampering the

system’s performance. In this work, we consider such a weakly hard setup where each control

task is only required to meet at least𝑚 deadlines in every sequence of 𝑘 consecutive deadlines,

following an

(
𝑚
𝑘

)
-firm constraint. Real-time control systems literature has explored the weakly

hard framework in several contexts, such as resource and priority management [14, 19], control-

scheduling co-design [10, 16], platform-level uncertainty management [15, 23]. In addition, control

systems literature has accounted for weakly hard settings in other parallel contexts, and several

seminal results exist in the related areas, e.g., network control systems [4, 12, 16], secure control

systems [1]. However, in the presence of deadline misses, it is essential to ensure two major aspects,

i.e., control stability and control safety, as it is implicit in the design of any hard real-time control

task system. Intuitively, control stability refers to the ability of maintaining the desired state even

in presence of external disturbances, whereas, control safety indicates that the system remains in a

safe state despite timing uncertainties like deadline misses. Therefore, in our work, we carefully

consider both stability and safety during schedule synthesis for a weakly hard control system

to achieve the desired outcome—a stable and safe schedule. Existing methods in this direction

explore schedulability of control tasks focusing either on the stability or on the safety aspect. For

example, [7, 10, 16] focus on schedulability paired with stability, whereas safety is combined with

schedulability in the recent works like [13, 23–25]. Some research efforts concentrate only on a

single aspect at a time like stability [4, 17], or safety [15]. In contrast, in this work, we explore the

triplet, (S1: Stability, S2: Safety, S3: Schedulability) in the context of weakly hard control systems,

for the first time in the literature. In particular, in this work, an exponential stability criterion is

derived from the settling time requirement [10], where settling time indicates the specific time by

which the system’s output reaches the desired reference. On the other hand, the control safety is

established by bounding the deviation between the ideal behavior (with no deadline miss) and the

behavior of the system under deadline misses [23, 25]. In general, corresponding to any

(
𝑚
𝑘

)
-firm

constraint, there is a collection of 𝑓 (𝑚,𝑘) = 𝑘𝐶𝑚 + 𝑘𝐶𝑚+1 + · · · + 𝑘𝐶𝑘 deadline hit-miss patterns. To

obtain safe

(
𝑚
𝑘

)
-firm constraints, a safety verification process is applied on all the 𝑓 (𝑚,𝑘) patterns

for multiple such
(
𝑚
𝑘

)
-constraints. This is done by verifying whether the deviation, between the

system’s state trajectory following each such pattern and the state trajectory corresponding to the

ideal behavior, crosses the given bound. The existing methods account for time-consuming and

extensive reachability algorithms [15, 23] or probabilistic techniques [8, 25] to perform this safety

verification. We overcome the perplexity of handling the extensive verification process, for the

combinatorial collection of patterns respecting multiple

(
𝑚
𝑘

)
-constraints, in the following way.

Novelty of the Proposed Method. We integrate the concepts of stability and safety to not

only obtain a safe and stable schedule but also make the safety verification process [15, 23, 25]

computationally efficient. We begin by ensuring stability through settling-time requirements,

deriving exactly one stability-oriented
(
𝑚
𝑘

)
-firm constraint for a control task, with significantly

smaller values of𝑚 and 𝑘 . This specifically accelerates the safety verification process by avoiding

multiple

(
𝑚
𝑘

)
s and also enhances the control performance. Furthermore, we ensure control safety

over an infinite time horizon, which is not addressed in existing methods such as [23–25], despite

adopting the same safety notion as ours. On ensuring both stability and safety, we then proceed to

synthesize a safe and stable schedule by employing the Satisfiability Modulo Theories (SMT) [18].
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The SMT-based approach has remained relatively underexplored in weakly hard control scheduling

(with a few exceptions like [26]), mainly due to its inherent scalability challenges, as it requires

exploring a vast search space of potential schedules. However, in our work, SMT is able to report

a feasible schedule within a reasonable time frame because we significantly prune the search

space of the SMT solver through two key steps: i) by deducing exactly one stability-oriented(
𝑚
𝑘

)
-firm constraint for a control task and ii) by selecting one deadline hit-miss pattern for the

task which obeys both stability and safety criteria. Furthermore, we generate a non-preemptive

schedule byminimizing the worst-case response time (WCRT) of all the control tasks. This particularly
helps in outperforming the existing preemptive EDF-based scheduling technique [10] and also the

SMT-based scheduling approach with non-preemptive-EDF [26], used in a similar context as ours.

Outline of the Proposed Method. The proposed method generates a stable and safe schedule

for a set of 𝑛 control tasks sharing a common processor. The method has three main steps. First,

to incorporate stability (𝑆1), we consider the standard control design parameter, settling time,
to deduce exactly one stability-oriented

(
𝑚
𝑘

)
-firm constraint for a control task, complying with

the exponential stability criterion. Once stability (𝑆1) is ensured, we proceed to the second step

with 𝑛 stability-oriented

(
𝑚
𝑘

)
-firm constraints for 𝑛 tasks, to bring control safety (𝑆2) into effect.

Control Design 
Parameter:  Settling Time

Set of ‘n’ stability-oriented 
weakly hard constraintsControl Safety Metric:

Deviation between the 
ideal behavior and the 
behavior with deadline 

misses
Set of ‘n’ hit-miss patterns, 
obeying stability- and safety-
oriented weakly hard constraints

Minimization of the 
Worst-Case Response 

Time (WCRT)

Ensuring exponential stability of the system 
(S1)

Ensuring safety over infinite time horizon  
(S2)

Synthesizing an SMT-based, safe and stable 
schedule  (S3) 

Fig. 1. Outline of the proposed method

For a control task, safety is ensured by: i)

constructing a stability-and-safety-oriented(
𝑚′

𝑘 ′
)
-firm constraint, and ii) choosing a spe-

cific deadline hit-miss pattern 𝑝 that meets

the

(
𝑚′

𝑘 ′
)
-firm constraint, ensuring that the

system’s performance only deviates from

the ideal behavior (where no deadline misses

are allowed) by a bounded amount [25]. We

also establish the control safety over an infi-

nite time horizon and mathematically prove

that it is sufficient to perform the safety ver-

ification till the settling time. The final step

accounts for schedulability (𝑆3) to generate

a stable and safe schedule, having the set of 𝑛 hit-miss patterns, {𝑝1, 𝑝2, · · · , 𝑝𝑛} following their re-

spective stability-and-safety-oriented

(
𝑚′

𝑘 ′
)
-firm constraints, as the input. We develop an SMT-based

schedule minimizing the WCRT. Figure 1 presents an overview of these three steps. We show that

our proposed method not only guarantees the essential attributes of stability and safety, but also

enhances control performance, accelerates the schedule synthesis process, and schedules a large

number of jobs. The experimental observations thenceforward, justify the discussed steps and the

constructions.

Notable Contributions. Besides addressing the triplet (𝑆1, 𝑆2, 𝑆3) for the first time to introduce

a safe and stable scheduling approach, our method enriches the existing literature as follows.

1) We correlate the control stability and control safety systematically by first deriving stability-

oriented

(
𝑚
𝑘

)
from the settling time and by deriving the stability-and-safety-oriented

(
𝑚′

𝑘 ′
)
from

(
𝑚
𝑘

)
,

with considerably smaller values of𝑚,𝑘,𝑚′
and 𝑘 ′. This helps to improve the control performance

and also speeds up both the safety verification and schedule synthesis processes. Furthermore, we

establish the control safety over an unbounded time horizon and also mathematically prove the

sufficiency of actually performing the safety verification till the settling time.

2) We develop a novel SMT-based scheduling approach that minimizes the WCRT to generate

a feasible schedule enhancing the scope of schedulability. We streamline the search space of the
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SMT solver and significantly make it time- and compute-efficient by selecting exactly one deadline

hit-miss pattern for a task, which obeys the stability and safety constraints for that task.

3) We conduct extensive experiments over 15 standard benchmark control systems from the

automotive domain to highlight the scalability and pertinence of the proposed method in real-world

applications. Specifically, we compare against four existing works [10, 23, 25, 26] to demonstrate

the efficiency of the proposed method. When comparing our method’s runtime to the approaches

mentioned above, we observe significant improvements. For instance, our method successfully

reports a feasible schedule within a highly reasonable time in most cases, while the method proposed

in [10] encounters time-out issues. Additionally, we achieve a 92% improvement in stability and

control performance compared to [23, 25], and a 21.57% improvement in safety compared to [10].

Organization. This paper is organized as follows. Section 2 lists down the related research

work, highlighting their impacts and constraints. Section 3 discusses the background and Section

4 considers a case study to highlight the core challenges that the proposed approach aims to

address. Section 5 delineates the entire method describing the three major steps. Section 6 presents

experimental evaluations to showcase the efficiency and scalability of the proposed method. Finally,

Section 7 summarizes the entire work with concluding remarks and future works.

2 RELATEDWORK
Here, we present the related research work that addresses various issues including each of the

three aspects, i.e., stability (𝑆1), safety (𝑆2) and schedulability (𝑆3), or their combinations.

𝑺1: Techniques for preserving stability in presence of deadline misses have been presented in

[7, 10, 12, 17, 20]. The work explored in [17, 20] employs the idea of joint spectral radius, as a

measure of stability. Asymptotically stable systems are considered in [7], whereas the exponential

stability criterion, derived from the control design parameter, settling time, is dealt with in [10–12],

which we too adopt in our work. The first three works discuss schedulability along with stability,

and the line of work of [10] being similar to ours, we compare with them particularly, to prove

the supremacy of the proposed method over theirs (ref. Section 6.3). None of the above methods

constructs a single, stability-oriented

(𝒎
𝒌

)

-firm constraint for each task, catalyzing both the safety

verification process and the schedule synthesis.

𝑺2: Several types of safety analysis mechanisms have been explored in the last few years and

many of them are applied in the scheduling context, too. Safe state sets (the state variables remain

within a safety bound) are considered in [26], with which they develop a scheduling scheme and

we show that our scheduling strategy is safe and also supersedes theirs. [13] establishes a co-design

technique, DECNTR, which allows switching of sampling periods within a safe range and ensures

the schedulability and robustness, maintaining the underlying safety. We do not follow this multi-

mode control strategy based on the changes in the sampling period and also the co-design approach

in our work. The quantitative safety notion, i.e., how much a trajectory, following a deadline hit-

miss pattern, deviates from the ideal case with no miss, is addressed in [15, 23–25], which we too

account for, in our work. The calculations for estimating an upper bound on this deviation through

various reachability algorithms [15], iterative approaches [15, 23] and probabilistic methods [25],

are complex and time-consuming. In contrast to these existing approaches, we use techniques from

stability to deduce

(𝒎
𝒌

)

-constraints that ensure safety. Also, we prove the safety till an infinite

horizon, which is missing in these methods. Moreover, the weakly hard schedules generated by

[23, 25] could potentially cause the systems to be unstable, in contrast to ours (ref. Section 6.3).

𝑺3: Scheduling of weakly hard control tasks, without accounting for stability and safety, is

studied in [6, 14, 19]. The work in [14] uses an EDF scheduling policy to bound the distribution

of deadline misses for uniprocessor systems and typical worst-case analysis (TWCA) serves as a

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: July 2025.



A Formal Approach towards Safe and Stable Schedule Synthesis in Weakly Hard Control Systems 1:5

tool to compute the weakly-hard constraints. Fixed-priority preemptive schedulers are explored in

[6, 19]. The former associates each job with a job-class, and the job’s response time along with the

job-class patterns aid to the scheduling process. However, the schedulability analysis for a set of

periodic tasks, is based on an MILP formulation in [19]. Some work considering the blend of stability

and schedulability includes [10], which solves an ILP to generate a stable schedule using EDF as

the underlying scheduling algorithm. We compare with their method particularly, to prove the

efficiency of our scheduling strategy (ref. Section 6.3). The authors of [7] construct an online state-

aware scheduling approach, guaranteeing the system’s stability and control performance. They

schedule all the critical and some of the non-critical jobs reporting low schedulability ratios, for

not too high utilization values. In contrast, we report a schedule even with much higher processor

utilization in most cases. Safety is combined with schedulability to design a safe schedule in [23–25],

where an automata-based scheduler, confined by the limitation of having equal sampling periods

for all systems, is considered mostly. Our technique generates a schedule without the constraint of

identical sampling periods. SMT-based scheduling, though well-studied in other areas of real-time

systems [5, 21], is a research direction that is actively being explored in this domain. The only

existing SMT-based scheduler that too tackles safety is [26]. However, this method suffers from

higher complexity issues due to the iterative process of counter-example-guided refinements to

obtain a safe schedule. On the other hand, the methods dealing with WCRT analysis [6, 22] work

in different settings; either in multiprocessor systems or in circumstances handling worst-case

temporal interference on a job-class. The framework considered in our work is different from

these kinds of existing methods, as we determine the job’s start and finish time by minimizing its

response time, and its arrival time is computable from the safety and stability criteria. Such an idea,

merged with SMT-based scheduling, is also a salient contribution of the proposed method.

3 BACKGROUND
This section discusses the system layout, consisting of the plant-controller model, the control

performance, stability and safety paradigms followed by the description of the fundamentals of the

weakly hard control task set.

3.1 Plant-Controller Pair
The dynamical system under consideration is referred to as the plant and there is a stabilizing

feedback controller, which on discerning the plant output/plant state, regulates the control input

periodically. Both of these together constitute the plant-control closed loop system, commonly known

as a feedback control loop. The plant’s dynamics are specified by a set of differential equations, also

known as state equations, given as, ¤𝒙 (𝒕 + 1) = 𝑨𝒙 (𝒕) + 𝑩𝒖(𝒕), 𝒚(𝒕) = 𝑪𝒙 (𝒕). The constant time

gap by which the plant’s dynamics are checked by the controller is referred to as the sampling
period of the controller. The choice of sampling period plays an important role in designing an

appropriate controller. In this work, we consider discrete linear time-invariant (LTI) systems and

the state equations are discretized to obtain the discrete LTI dynamics of the plant, given as follows.

𝒙[𝒌 + 1] = 𝑨𝒅𝒙[𝒌] + 𝑩𝒅𝒖[𝒌], 𝒚[𝒌] = 𝑪𝒅𝒙[𝒌]. (1)

Here, the vectors 𝒙[𝒌], 𝒚[𝒌] and 𝒖[𝒌] represent the plant state, output and the control input

respectively, at the 𝒌-th sampling instant, or at time 𝒕 = 𝒌𝒉, where 𝒌 ∈ N and 𝒉 is the sampling

period. 𝑨𝒅 , 𝑩𝒅 , and 𝑪𝒅 are the system matrices. The LTI dynamics of the controller is given as,

𝒖[𝒌] = 𝑲𝒙[𝒌 − 1]. (2)

where 𝑲 is the feedback control gain. The correct working of the controller relies upon the suitable

values of the gain. In this work, we consider static controllers, i.e., controllers where the control
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action is a function of only the most recent state measurement. Also, we consider a one-sample

delayed system, as modeled in Eq. (2), and we use the standard optimal control technique, Linear
Quadratic Regulator (LQR) for the controller design.

The discrete-time controller is generally implemented as a software control task in the underlying

embedded architectural platform, where it gets executed periodically with a period of 𝒉. The control
task needs to complete its execution before a certain time, which is known as its deadline and
this is its real-time requirement to be satisfied. In this work, we follow the logical execution time

paradigm, i.e., the system’s state, sampled at timestep 𝒌 − 1, is used to obtain the new control input

at timestep 𝒌 (as in Eq. (2)). The new input is applied at the deadline (equal to the sampling period

here) of the control job [17].

3.2 Control Performance and Stability
Both the control performance and the system’s stability are cardinal features when dealing with

a feedback control loop. We consider the control performance metric as the settling time. It is
defined as the required time by which the system output reaches and remains around the reference

value (e.g., within 5 % error band), after responding to a sudden change in the input (e.g., step-

like reference change), under the assumption that the system is asymptotically stable when no

deadlines are missed. The settling time is a standard control design parameter and we use it to

deduce the exponential stability criterion in our method (ref. Section 5.1). We state below the idea

of exponential stability that we consider as the notion of the system’s stability [10].

Definition 1 ((𝒍, 𝝐)-Exponential Stability Criterion). A dynamical system, given by Eq. (1), is
said to be (𝒍, 𝝐)-exponentially stable, if for a given 𝝐 ∈ (0, 1) and an 𝒍 ∈ N, | |𝒙 [𝒌+𝒍 ] | |

| |𝒙 [𝒌 ] | | < 𝝐 , for every
𝒌 ∈ N, i.e., every 𝒍-length ratio of the state norm | |𝒙 | | (2-norm) decreases by a damping factor of 𝝐 .

Intuitively, the above definition states that a reduction in the ratio of norms by 𝝐 at every 𝒍
sampling intervals leads the system’s norm to become small over time (tending to zero) and ensures

exponential stability. In discrete-time LTI systems, like we consider in our work, exponential stability

is equivalent to other forms of stability, e.g., Lyapunov stability and bounded-input, bounded-output

(BIBO) stability. Hence, these forms of stability are also accounted for in our method.

3.3 Weakly Hard Control Systems
In a resource-constrained embedded environment, allowing the tasks to miss a few of their deadlines

occasionally, favors the task scheduling process and reduces resource overload, but the system

performance and stability must not be inhibited [10, 16]. In a hard real-time setting, where all the

control tasks need to meet their respective deadlines, it often becomes arduous to abide by such

stringent requirements, and therefore, the concept of weakly hard systems eventuates. It is a much

more lenient and flexible setting, provided that the number of deadline misses in a sequence of

task invocations is bounded. For example, in a series of 𝒌 consecutive deadlines, at least 𝒎 of them

must be met, which is popularly termed as the

(𝒎
𝒌

)

-firm weakly hard constraint. There are many

other such familiar constraints in this model, but we consider the

(𝒎
𝒌

)

-firm constraint in our work.

The deadline miss is generally manifested as a control execution skip. We adhere to the hold-and-
kill policy [15, 17] in this work, which means, for a control execution skip in a sampling interval

[𝒌 − 1, 𝒌), no new control input is computed and the plant state is updated using the last control

input from the preceding iteration, i.e., 𝒖[𝒌] = 𝒖[𝒌 − 1]. Considering the augmented state vector

(both state variables and control input) as 𝒛[𝒌] =
[

𝒙[𝒌]
𝒖[𝒌]

]

, the closed loop dynamics matrices A𝒏𝒔

and A𝒔 in situations of no execution skip and an execution skip, are obtained as, A𝒏𝒔 =
[

𝑨𝒅 𝑩𝒅

𝑲 0

]
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and A𝒔 =
[

𝑨𝒅 𝑩𝒅

0 𝑰

]

respectively. Conforming to this, we define a Control Execution Sequence

(CES) as a pattern of deadline hits and misses (equivalently, a pattern of no execution skip and

execution skip) in a sequence of consecutive task invocations, where a deadline hit and miss are

denoted by 1 and 0 respectively. For example, if 𝒎 = 2 and 𝒌 = 5, then one CES following the
(3
5
)

-firm constraint, could be, 𝒔 = 11010, for a time horizon of 5. Note, here the execution skips

occurred at the third and fifth sampling intervals and the system evolves with this CES as follows,

𝒛[𝒌 + 5] = A𝒔A𝒏𝒔A𝒔A𝒏𝒔A𝒏𝒔𝒛[𝒌].

3.4 Control Safety
In case of weakly hard real-time settings, since execution skips are allowed deliberately, it is

essential to determine how much the system deviates from its ideal behavior (i.e., following the

sequence 111 · · · ), when it evolves following any weakly hard constraint. The notion of control

safety that we consider in our work, is satisfying a given safety bound [15, 25] all the time. Ensuring

only the system’s stability is not sufficient for safety-critical systems that rely upon some weakly

hard constraints. Therefore, we pursue integrating it with control safety and thereby designing a

stable and safe system. The following terminologies defined below formalize the above arguments.

Definition 2 (Nominal Trajectory). Anominal trajectoryN is a sequence of state vectors 𝒙[0], 𝒙[1],
· · · , 𝒙[𝑻 ] ∈ R𝒒 , or the state evolutions up to a finite time length 𝑻 , where 𝒙[0] is the initial state and
𝒙[𝒋] is calculated using Eq. (1) and (2), for 𝒋 = 1 to 𝑻 .

Note that the state evolution based on the ideal sequence 1𝑻 forms the nominal trajectory.

Similarly, when execution skips are allowed following any

(𝒎
𝒌

)

-firm constraint, we have a CES-
based trajectory C, where the system evolves with a CES that follows the given

(𝒎
𝒌

)

-firm constraint

(ref. the example at the end of the previous section). Note that the initial state of any such CES-based

trajectory C is the same as that of N. Let 𝒙𝒏 = (𝒙𝒏
1 , 𝒙

𝒏
2 , · · · , 𝒙

𝒏
𝒒) and 𝒙

𝒄 = (𝒙𝒄
1 , 𝒙

𝒄
2 , · · · , 𝒙

𝒄
𝒒) denote

the state vectors for trajectories N and C respectively, and dis(.) be the Euclidean distance on R𝒒

(i.e., using the | |.| |2-norm). Taking into account the infinite norm over time, the deviation of C

from N is expressed as,

𝚫(N, C) = max
0≤𝒋≤𝑻

𝒅 𝒊𝒔(N[𝒋], C[𝒋]) = max
0≤𝒋≤𝑻

| |𝒙𝒏
[𝒋] − 𝒙𝒄

[𝒋]| | = max
0≤𝒋≤𝑻

√

√

√ 𝒒
∑︁

𝒊=1

(𝒙𝒏
𝒊 [𝒋] − 𝒙𝒄

𝒊 [𝒋])
2
(3)

Definition 3 (Safety Requirement). A CES meets the safety requirement, if its trajectory C obeys
the criterion: 𝚫(N, C) ≤ 𝒅safe, where 𝒅safe is the given safety bound and N is the nominal trajectory.
Since 𝚫 is the maximum of the deviations at all time-points, thus, the quantity dis(N[𝒋], C[𝒋]) is
less than or equal to 𝒅safe, at each time-point 𝒋.

3.5 Control Task Set
We aim to synthesize a safe and stable schedule for a set of 𝒏 independent control tasks in a

uniprocessor system, sharing a common processor. Let 𝑻𝑪 = {T1, T2, · · · , T𝒏} be the set of 𝒏
control tasks that are executed together following a set of CESs P = {𝒑1, 𝒑2, · · · , 𝒑𝒏}. These

CESs are obtained by satisfying some stability and safety criteria, which will be discussed in

subsequent sections. Each task T𝒊 is characterized by its arrival time (𝒂𝒊), sampling period (𝒉𝒊),

worst-case execution time (WCET) (𝒄 𝒊) and relative deadline (𝒅𝒊), where 𝒅𝒊 is considered to be

equal to the sampling period 𝒉𝒊 . The position of deadline hits, i.e., a 1 in a CES 𝒑 𝒊 or 𝒑 𝒊[𝒋] = 1,
indicates a job instance 𝒋 of that task, whose arrival time (𝒂𝒊,𝒋), sampling period (𝒉𝒊,𝒋), WCET

(𝒄 𝒊,𝒋), relative deadline (𝒅𝒊,𝒋) and absolute deadline (𝒂𝒊,𝒋 + 𝒅𝒊,𝒋) are given by 𝒋 × 𝒉𝒊 , 𝒉𝒊 , 𝒄 𝒊 , 𝒅𝒊 and
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(𝒋 + 1) × 𝒉𝒊 (as 𝒅𝒊 = 𝒉𝒊), respectively. For example, let T be a task with sampling period 3ms and

𝒑 = 101 be its CES, conforming to the stability and safety criteria. The jobs corresponding to the

positions 𝒑[0] and 𝒑[2], have the arrival time, sampling period, relative and absolute deadlines as,

(0ms, 3ms, 3ms, 3ms) and (6ms, 3ms, 3ms, 9ms), respectively. Moreover, for each job instance,

we have three other parameters, namely, the start time (when a job begins execution), finish time
(when a job completes execution) and the response time (difference between the finish time and the

arrival time). For the 𝒋-th job of task T𝒊 , these parameters are denoted by 𝒔𝒕𝒊,𝒋 , 𝒇 𝒊𝒏𝒊,𝒋 and 𝒓𝒆𝒔𝒊,𝒋 ,
and thus by definition, 𝒓𝒆𝒔𝒊,𝒋 = 𝒇 𝒊𝒏𝒊,𝒋 − 𝒂𝒊,𝒋 . The worst-case response time (WCRT) of a task T𝒊 is

the maximum of the response time of all its jobs, i.e., WCRT(T𝒊) = max𝒋∈𝑱 (T𝒊 ) 𝒓𝒆𝒔𝒊,𝒋 , where 𝑱 (T𝒊)

denotes the set of jobs of task T𝒊 . For the task T𝒊 to be schedulable, WCRT(T𝒊) ≤ 𝒅𝒊 must hold, for

each 𝒊. The relevance of the parameters is elaborated while discussing schedulability in Section 5.3.

An Important Note: In this work, we consider an offline schedule, where we determine the

ordering of task execution at the design time. Also, we use static controllers and do not re-design

them by updating the sampling period to enhance the control performance or reduce the resource

overload. Rather, keeping the sampling period fixed, we synthesize an

(𝒎
𝒌

)

-firm constraint for

each control task that ensures both the system’s stability and safety while enhancing the control

performance. Having the sampling periods and WCETs as fixed inputs, if we try to schedule all

the 𝒏 tasks in a hard real-time setting, then it may often lead to a scenario where all the tasks

can no longer be scheduled on one processor. Even in a weakly hard setting, if the scheduler

allows some of the jobs to miss their deadlines in order to obtain a feasible schedule, then the

deadline hit-miss sequence returned by the scheduler may not satisfy the underlying stability

and safety requirements. This may lead to diminished control performance. Hence, considering

resource-constrained systems, we intentionally allow some execution skips for a control task to

obtain its CES following an

(𝒎
𝒌

)

-constraint. This CES complies with both the stability and safety

criteria (ref. Definitions 1 and 3 respectively). Each of the 𝒏 tasks is then scheduled on the processor

following its CES.

4 A MOTIVATIONAL EXAMPLE
We now consider a case study of a DC motor speed control system (MS) and discuss its stability

and safety constraints, to illustrate how the proposed method incorporates these aspects in task

scheduling. MS is a second-order dynamical system that controls the rotational speed of the motor

(output) by regulating the motor terminal voltage (control input). Since, it is a safety-critical

application, an uncontrolled motor speed can lead to overheating and hazardous outcomes, hence, it

is crucial to maintain a stable speed, within a safety limit. The system dynamics matrices, 𝑨, 𝑩 and

𝑪 (ref. Section 3.1) of the control system are given as, 𝑨 =
[

−10 1
−0.02 −2

]

, 𝑩 =
[

0
2

]

, 𝑪 = [1 0].

The state variables denote the rotational speed and armature current. Suppose that MS is designed

to achieve a reference speed of 0.5 rad s−1. If there is a sudden increase in the speed (say it reaches

to 1.2 rad s−1 at maximum) due to some external input, the speed should decrease and reach the

reference, i.e., 0.5 rad s−1, within the settling time (ref. Section 3.2), say 0.3 s. The discrete-time

controller for this MS is implemented as a software control task in the embedded platform and it is

sampled periodically with a time gap of 𝒉, say 10ms (sampling period).

To ensure stability in a weakly hard real-time setting in our proposed method; we deduce the

(𝒍, 𝝐)-exponential stability criterion (ref. Definition 1) from the settling time, maximum disturbance

at input and the reference values, thereby deriving exactly one stability-oriented

(𝒎
𝒌

)

-firm constraint

(ref. Section 5.1). This guarantees that, if the system’s state evolution follows any CES corresponding

to that

(𝒎
𝒌

)

, then the output reaches the desired reference within the settling time, after responding

to a sudden change in the input. Figure 2 depicts scenarios of stable and unstable output responses
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corresponding to

( 7
10
)

and

( 5
10
)

constraints respectively, when the system is simulated till a time

horizon of 2 s. Suppose that the

( 7
10
)

-constraint is derived from the (𝒍, 𝝐)-stability criterion and
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Fig. 2. Stable and unstable responses in MS

we consider any CES following

( 7
10
)

to simulate the

system. We observe that the corresponding output

(marked with red) reaches the reference, 0.5 rad s−1,
within the settling time, 0.3 s, after responding to a

sudden increase in the speed to 1.2 rad s−1. On the

other hand, considering the

( 5
10
)

-constraint, the out-

put not only fails to reach the reference within 0.3 s,

but also shows a highly transient response initially

(marked with blue), which may lead to undesirable

performance. This implies that the underlying sta-

bility is not hampered if 3 or lesser deadlines are missed in a sequence of 10 deadlines (i.e., the
( 7
10
)

-constraint), however the system tends to be unstable on missing 5 or more deadlines. This

substantiates the fact that the proposed method ensures the system’s stability in a weakly hard

setting, by confirming that the system stabilizes quickly after responding to sudden changes. Also,

the exponential stability is guaranteed (complying with the (𝒍, 𝝐)-exponential stability criterion).

Fig. 3. Safe and unsafe state trajectories in MS

However, it is vital to ensure that the system’s

behavior should not deviate significantly from the

ideal/nominal behavior (no deadline misses) be-

fore meeting the settling time requirement, i.e.,

during the transient phase. The notion of control

safety considered in our work is characterized by

bounding such deviations. In a weakly hard sce-

nario, our goal is to ensure that the state trajec-

tory C, corresponding to some CES allowing a few

deadline misses, always deviates from the nomi-

nal trajectory N, only by a bounded amount, i.e.,

𝚫 (N, C) ≤ 𝒅safe (ref. Definition 3). Let us here

consider 𝒅safe as 0.08. Figure 3 outlines the behav-
iors of two trajectories for two different CESs, following the same stable

( 7
10
)

-constraint. The

trajectory following the CES 1110111010 (marked with green) remains within the safety envelope

of the nominal trajectory, whereas, the trajectory of another CES, 1000111111 (marked with red),

fails to abide by the safety criterion as the corresponding deviation crosses the safety bound 𝒅safe.
This may lead to fatal consequences in safety-critical applications. The unsafe behavior mainly

arises due to the consecutive three deadline misses at the beginning for the second CES, leading to

diminished control performance. We propose a strategy that prudently avoids such consecutive

misses and we consider CESs that follow both stability and safety criteria (ref. Definitions 1,3).

Since this work aims to generate a stable and safe schedule for a set of 𝒏 control tasks in a

uniprocessor system, hence for each task we ensure that the CES, following which the task is

scheduled, should always obey the underlying stability and safety criteria. We finally obtain a

feasible schedule for the 𝒏 control tasks by minimizing the WCRT of each control task.

5 THE PROPOSED METHOD
We first formally define the problem statement and then discuss the proposed solution.

Problem Statement: For a set of 𝒏 plant-control systems, given the following inputs: i) settling

time and output reference of each control system, ii) a set of 𝒏 control tasks (corresponding to the 𝒏
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plant-control systems) in a uniprocessor system, each characterized by its sampling period, WCET

and safety bound; synthesize a feasible schedule of the tasks (if one exists), that ensures system’s

stability and safety over an infinite time horizon.

We solve the following two sub-problems to find a solution to the above problem.

Sub-problem 1:With the given set of inputs, determine a CES for each task that conforms with

the stability and safety criteria, i.e., it ensures that the closed loop is (𝒍, 𝝐)-exponentially stable

(ref. Definition 1 for stability) and the system’s behavior under deadline misses, deviates from the

nominal behavior (with no deadline miss) only by a bounded amount (ref. Definition 3 for safety).

Sub-problem 2: Given the set of 𝒏 CESs (comply with stability and safety criteria in Sub-problem

1) for the 𝒏 control tasks as input, generate a feasible uniprocessor schedule (if one exists), that is

optimal w.r.t. WCRT while ensuring the system’s stability and safety over an infinite time horizon.

Step 1:  Ensuring System’s Stability  (S1 )

(l, €) – exponential stability criterion  →   Minimum control 
execution rate  →  Stable constraint  →   SASO constraint

Step 2:  Ensuring Control Safety  (S2 )

1) SASO constraint  →  SASSO constraint →   A safe CES         
 2)  Guaranteeing safety till the infinite time horizon

Step 3:  Safe and Stable Schedule Synthesis with SMT  (S3 )

‘n’ safe CESs  →  SMT schedule till H  →  Repeat schedule till Ĥ  →  
Safe and stable schedule SĤ 

Fig. 4. Stepwise summary of the method.
[SASO: Scheduling-Affable Stability-Oriented Constraint,

SASSO: Scheduling-Affable Stability-and-Safety-Oriented Constraint.]

The proposed method consists of three

main steps. Figure 4 gives a synopsis of it,

showing how the three aspects, stability (𝑺1),
safety (𝑺2) and schedulability (𝑺3) are taken
into consideration in our work. Steps 1 and

2 propose a solution to Sub-problem 1, while

Step 3 offers a solution to Sub-problem 2. We

demonstrate each of these steps below.

5.1 Step 1: Ensuring System’s Stability
The first step is initiated with the concepts

and theory of stability (𝑺1). We consider the

notion of (𝒍, 𝝐)-exponential stability in this

work. In order to exhibit its correlation with

the settling time [10], we proceed as follows.

As mentioned earlier, settling time is the required time by which the system’s output reaches and

remains around the reference value (e.g., within 5 % error band). It is analyzed using the system’s

step response, i.e., how quickly the system responds to a sudden change in the input and then

stabilizes towards the actual reference. Let 𝒙 = (𝒙1, 𝒙2, · · · , 𝒙𝒒) be the state vector. Without loss of

generality, we consider that in the presence of some external input or in an unsettled scenario, the

system may operate in a larger region | |𝒙 | | =
√
𝒙𝑻𝒙 ≤ 𝝃𝒔 + 𝜹 , where 𝜹 is the maximum amount of

deviation allowed in an unsettled situation. However, by the settling time, the operating region

must be confined only to | |𝒙 | | =
√
𝒙𝑻𝒙 ≤ 𝝃𝒔 , i.e., the operating region in the settled scenario is

√
𝒙𝑻𝒙 ≤ 𝝃𝒔 (| |.| |2 is referred to as | |.| |). Here, 𝝃𝒔 is the radius of the reference region and it is

obtained from the output reference (the desired value that the system tries to achieve) as follows. Let

the output vector be𝒚 = (𝒙1, 𝒙2, · · · , 𝒙𝒘), for some some𝒘 ≤ 𝒒, and the output reference vector be

𝝃 = (𝝃1, 𝝃2, · · · , 𝝃𝒘). Obeying the respective output references 𝝃𝒊 , 𝝃𝒔 is chosen as

√︃

∑𝒘
𝒊=1 𝝃𝒊

2
. Note

that for the case of a single output variable (i.e., 𝝃 is a scalar), 𝝃𝒔 is equal to the output reference 𝝃 .
Now, we establish the (𝒍, 𝝐)-exponential stability criterion (ref. Definition 1) from the settling

time, which is primarily motivated by [10]. We consider that the system evaluation starts (i.e.,

at time-point 0) in some perturbed/unsettled scenario. As the system reaches the desired output

reference within the settling time, hence, by the construction of 𝝃𝒔 as described above, the operating
region, | |𝒙 | | ≤ 𝝃𝒔 , is reached from the region, | |𝒙 | | ≤ 𝝃𝒔 + 𝜹 , within the settling time 𝑻𝒔 , i.e., within
𝑵𝒉 = ⌈

𝑻𝒔
𝒉 ⌉ samples (𝒉 is the sampling period). This implies, | |𝒙[𝑵𝒉]| | ≤ 𝝃𝒔 with | |𝒙[0]| | = 𝝃𝒔 + 𝜹

(as initially the maximum value 𝝃𝒔 + 𝜹 is reached), and hence,
| |𝒙 [𝑵𝒉 ] | |

| |𝒙 [0] | | ≤
𝝃𝒔

𝝃𝒔+𝜹
. Thus, we consider
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the damping ratio as
𝝃𝒔

𝝃𝒔+𝜹
. Based on the values of 𝑻𝒔 and 𝒉, 𝑵𝒉 can be arbitrarily large, hence,

to work with a computationally viable quantity, 𝑵𝒉 is tuned by a constant, 𝒇 > 1, and we set

𝒍 = ⌈
𝑵𝒉
𝒇 ⌉. Intuitively, rather than considering a larger length of 𝑵𝒉 to ensure that

| |𝒙 [𝑵𝒉 ] | |

| |𝒙 [0] | | ≤
𝝃𝒔

𝝃𝒔+𝜹

holds, we consider smaller intervals, like [0, 𝒍), [𝒍, 2𝒍), · · · , to guarantee that, for some 𝝐 < 1 (to
be determined),

| |𝒙 [𝒍 ] | |
| |𝒙 [0] | | < 𝝐 , | |𝒙 [2𝒍 ] | |

| |𝒙 [𝒍 ] | | < 𝝐 , etc. holds. This implies
| |𝒙 [𝑵𝒉 ] | |

| |𝒙 [0] | | < 𝝐𝒇 . To ensure that

| |𝒙 [𝑵𝒉 ] | |

| |𝒙 [0] | | ≤
𝝃𝒔

𝝃𝒔+𝜹
holds, we tune the damping ratio,

𝝃𝒔
𝝃𝒔+𝜹

, to obtain the modified damping ratio,

𝝐 = (
𝝃𝒔

𝝃𝒔+𝜹
)

1
𝒇
. Note that ensuring this (𝒍, 𝝐)-pair, the (𝑵𝒉,

𝝃𝒔
𝝃𝒔+𝜹

)-stability criterion is automatically

satisfied, since (𝒍, 𝝐) is much stricter than (𝑵𝒉,
𝝃𝒔

𝝃𝒔+𝜹
). This is how we derive the (𝒍, 𝝐)-exponential

stability pair from the settling time.

Next we construct an

(𝑴
𝑲

)

-firm constraint that conforms with the (𝒍, 𝝐)-stability criterion. Let 𝒓 be
the rate of successful control execution or the percentage of deadline hits over an infinite horizon and

it is derived as follows. If 𝜷 is the minimum decay factor (a tuning parameter for the damping ratio

𝝐), 𝒉 is the sampling period, 𝝆 is the spectral radius of a matrix and 𝝌0 = 𝝆(A𝒔)
2
, 𝝌1 = 𝝆(A𝒏𝒔)

2
,

𝜷 =
ln ( 1

𝝐 )

𝒍×𝒉 , then the inequality
2 ln (𝜷 )+ln (𝝌0 )
ln (𝝌0 )−ln (𝝌1 )

≤ 𝒓 ≤ 1 holds [10]. The min value of 𝒓 is 2 ln (𝜷 )+ln (𝝌0 )
ln (𝝌0 )−ln (𝝌1 )

.

Example 1. Let us consider a cruise control system, where the reference speed (output variable)
of the car is 25 kmh

−1 (𝝃𝒔) and the speed can increase to 70 kmh
−1 (𝝃𝒔 + 𝜹) at maximum. If the

settling time (𝑻𝒔) is 1 s and the speed goes high (≤ 70 kmh
−1), the cruise control should guarantee

that it decreases to 25 kmh
−1 within 1 s, i.e., within 𝑵𝒉 = ⌈

𝑻𝒔
𝒉 ⌉ = ⌈ 1 s

0.01 s
⌉ = 100 samples, assuming

𝒉 = 0.01 s. As 100 is a large value, we select a smaller and feasible value like 𝒍 = ⌈
𝑵𝒉
𝒇 ⌉ = ⌈ 1005 ⌉ = 20

(with the tuning parameter 𝒇 = 5). The modified damping ratio is 𝝐 = (
𝝃𝒔

𝝃𝒔+𝜹
)

1
𝒇 = ( 2570 )

1
5 = 0.812,

and hence the norm | |𝒙[𝒌]| | decreases by a factor of 0.812 in every 𝒍 = 20 sampling intervals. The

minimum decay factor is obtained as, 𝜷 =
ln ( 1

𝝐 )

𝒍×𝒉 = 1.044. For 𝝌0 = 1.007 and 𝝌1 = 0.890, we obtain
2 ln (𝜷 )+ln (𝝌0 )
ln (𝝌0 )−ln (𝝌1 )

= 0.753. Thus, 0.753 ≤ 𝒓 ≤ 1 and min value of 𝒓 is 0.753.

We set forth the next definition with the above expositions.

Definition 4 (Stable Constraint). The
(𝑴
𝑲

)

-firm constraint obtained from the (𝒍, 𝝐)-stability crite-
rion is said to be a stable constraint, when 𝑴 = ⌈(

2 ln (𝜷 ) + ln (𝝌0 )
ln (𝝌0 ) − ln (𝝌1 )

) × 𝒍 ⌉ and 𝑲 = 𝒍 .

This clearly shows that allowing 𝑲 −𝑴 execution skips in a sequence of 𝑲 executions does not

inhibit the system’s stability. In Example 1, we obtain

(16
20
)

as the stable constraint for the cruise

control system. Since 𝜷 =
ln ( 1

𝝐 )

𝒍×𝒉 , as mentioned above, hence 𝝐 = 𝒆−𝒍𝒉𝜷 . As | |𝒙 [𝒌+𝒍 ] | |
| |𝒙 [𝒌 ] | | < 𝝐 for every

𝒌 ∈ N, as per the (𝒍, 𝝐)-exponential stability criterion (ref. Definition 1), hence the norm | |𝒙[𝒌]| |
tends to zero exponentially. Thus, the stable constraint

(𝑴
𝑲

)

makes the system exponentially stable.

Since ourwork focuses on synthesizing a safe and stable schedule, we develop a strategy to quicken
the scheduling process, maintaining the underlying stability and enhancing the control performance
simultaneously, specifically by constructing another

(𝒎
𝒌

)

from the stable

(𝑴
𝑲

)

-constraint. The

parameter 𝒍 in the (𝒍, 𝝐)-pair is generally large (in range 20-40) and working with such large values

of 𝑴 and 𝑲 (since 𝑲 = 𝒍), becomes computationally intractable. For this, we construct another
(𝒎
𝒌

)

from the stable

(𝑴
𝑲

)

-constraint, such that 𝒎 divides 𝑴 , 𝒌 divides 𝑲 and both 𝒎 and 𝒌 are

much smaller than 𝑴 and 𝑲 respectively. Let us consider the stable constraint,

(𝑴
𝑲

)

=
(16
20
)

, for the

cruise control system, as shown in Example 1. Let

(𝒎
𝒌

)

=
(4
5
)

be the smaller constraint and 𝒑 be a

CES corresponding to

(4
5
)

. If 𝒑 is repeated 4 times, we obtain a CES of length 20 satisfying
(16
20
)

,

since 𝒑 obeys the

(4
5
)

-constraint. Note that the

(4
5
)

-constraint aids to the stability of the system
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by generating the stable constraint

(16
20
)

, complying with the above argument. The construction of

such an

(𝒎
𝒌

)

helps in two ways, first by rendering smaller values of 𝒎 and 𝒌 (4 and 5 here), thereby
making the scheduling method time-efficient (discussed in Section 5.3). Secondly, it expunges

the case of consecutive 0s indicating the fact of continuous deadline misses which may increase

the chance of violating the safety criterion (crossing the bound 𝒅safe) and diminish the control

performance. In our example, consecutive four 0s could occur in a CES following the

(16
20
)

constraint,

but this can never occur if the CES 𝒑 is repeated 4 times. Keeping all these factors in mind, we

design this new

(𝒎
𝒌

)

-constraint and formally define it below.

Definition 5 (Scheduling-Affable Stability-Oriented Constraint (SASO)). An
(𝒎
𝒌

)

-firm constraint
is called as SASO if it is obtained from the stable constraint

(𝑴
𝑲

)

, such that, 𝒎 and 𝒌 are relatively
small divisors of 𝑴 and 𝑲 respectively.

As the SASO constraint makes the scheduling process time-efficient (ref. Section 5.3) and also

contributes to the system’s stability, hence we use the terms ‘scheduling-affable’ and ‘stability-

oriented’ in its nomenclature. The SASO constraint is an input to Step 2, as discussed next.

5.2 Step 2: Ensuring Control Safety
Now, we proceed to the second step of the method, which enforces control safety (𝑺2) on top of

control stability. Considering a SASO constraint

(𝒎
𝒌

)

for a control system, we first examine whether

there exists a CES following that

(𝒎
𝒌

)

, with exactly (𝒌-𝒎) execution skips, which satisfies the safe

bound 𝒅safe. This is done by checking whether the deviation between any such CES-based state

trajectory and the nominal trajectory N (ref. Eq. (3)), is less than or equal to 𝒅safe. If such a CES

is found, then it is evident that this

(𝒎
𝒌

)

potentially contributes to the system’s safety. The term

‘potentially’ highlights the fact that at least one of the CESs conforming to that

(𝒎
𝒌

)

satisfies the

safety bound but not all the CESs, hence, we may not declare the entire SASO constraint to be safe,

rather we define the next two terminologies based on these explanations.

Definition 6 (Safe CES). A CES 𝒑 is called as safe if its corresponding state trajectory C𝒑 de-
viates from the nominal trajectory N by an amount, that does not exceed the safe bound 𝒅safe, i.e.,
𝚫 (N, C𝒑) ≤ 𝒅safe.

Definition 7 (Scheduling-Affable Stability-and-Safety-Oriented Constraint (SASSO)). An
(𝒎
𝒌

)

-firm
constraint is called as SASSO, if it is SASO and there exists at least one safe CES with exactly 𝒎 1s in a
length of 𝒌 .

As

(𝒎
𝒌

)

denotes at least 𝒎 deadline hits in a sequence of 𝒌 consecutive control executions, thus

(𝒎′

𝒌

)

always implies

(𝒎
𝒌

)

, for any 𝒎 < 𝒎′ ≤ 𝒌 . Therefore, if no safe CES with exactly 𝒎 1s in a

length of 𝒌 is obtained, after probing through
𝒌𝑪𝒎 such CESs, we increase the number of 1s to

𝒎 + 1 and iterate the same process of safety verification with the

(𝒎+1
𝒌

)

constraint. Starting with

a SASO constraint

(𝒎
𝒌

)

, continuing the same process with an increasing value of 𝒎, let

(𝒎′

𝒌

)

be

the constraint for which finally a safe CES with 𝒎′ 1s in a length of 𝒌 is found. We then consider
(𝒎′

𝒌

)

as a SASSO constraint. For example, the CES 𝒑 = 11011 following the SASO constraint

(4
5
)

(obtained from the stable constraint

(16
20
)

in Example 1) obeys the safety bound, 𝒅safe = 0.06, for
the cruise control system, since its trajectory C𝒑 satisfies inequality 𝚫(N, C𝒑) ≤ 𝒅safe (𝚫(.) as in
Eq. (3)). Hence, 11011 is a safe CES and

(4
5
)

is SASSO constraint. Herewith, we obtain a solution

to Sub-problem 1, because the safe CES obtained from a SASSO constraint, for each control task,

complies with both the stability and safety criteria.
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Now, we discuss our mathematical findings related to control safety. Eq. (3) states that the

safety verification is performed till the time horizon 𝑻 , ensuring that the distance between the two

trajectories is lesser or equal to 𝒅safe, for each 𝒋 = 0 to 𝑻 . In this regard, we try to address the

following three research questions.

Q1. Is the control safety requirement guaranteed merely till the time-point 𝑻 or over an infinite time
horizon?

Q2. Is there any upper bound on the time horizon length for verifying the control safety (since we
cannot do it over an unbounded horizon)?

Q3. Can we obtain the exact time-point 𝑻 , which is sufficient to guarantee control safety?

Fig. 5. Distance 𝒅 𝝉
𝒊 between the trajectories

for 𝒍 = 4, 𝝁 = 3

To answer Q1, we establish Theorem 1, where we

compute an upper bound on the deviation, 𝚫(N, C)
(ref. Eq. (3)), for any safe CES-based trajectory C and

the nominal trajectory N. For example, as mentioned

above, the safe CES 11011 corresponds to the SASSO
constraint

(4
5
)

, which is deduced from the stable

(𝑴
𝑲

)

=
(16
20
)

(ref. Example 1). Hence, 𝒍 = 𝑲 = 20 and the state

norm | |𝒙 | | reduces by a factor of 𝝐 in every 20 sam-

pling intervals. We use this (𝒍, 𝝐)-stability criterion to

derive an upper bound on the distance between the two

trajectories, i.e., 𝒅 𝒊𝒔(N[𝒋], C[𝒋]), at each time-point 𝒋.
Finally, we prove that this upper bound tends to zero

as time increases, hence the actual distance also ap-

proaches zero. This clarifies that both the trajectories

merge and the corresponding deviation becomes zero

after some time, thereby establishing control safety over an infinite time horizon.

Theorem 1. A safe CES 𝒑 obtained from a SASSO constraint
(𝒎
𝒌

)

, that conforms with the stability
and safety criteria, furnishes control safety over an infinite time horizon.

Proof. To prove the claim, we first express all the arguments till a finite time-point 𝑻𝒖𝒃 = 𝝁 × 𝒍 ,
for some 𝝁 ∈ N and the parameter 𝒍 comes from the (𝒍, 𝝐) pair. Next, we establish the control

safety till the infinite horizon. Let N and C𝒑 , respectively, be the nominal trajectory and a CES-

based trajectory for a safe CES 𝒑, with exactly 𝒎 1s in length 𝒌 , where
(𝒎
𝒌

)

is a SASSO constraint.

Let 𝒙𝒏[𝒋] = {𝒙𝒏
1 [𝒋], 𝒙

𝒏
2 [𝒋], · · · , 𝒙

𝒏
𝒒 [𝒋]} and 𝒙𝒄 [𝒋] = {𝒙𝒄

1 [𝒋], 𝒙
𝒄
2 [𝒋], · · · , 𝒙

𝒄
𝒒[𝒋]} ∈ R

𝒒
, represent the

respective state vectors for the two trajectories N and C𝒑 respectively, at the 𝒋-th time-point. Also,

the initial states of both the trajectories are equal, i.e., 𝒙𝒏[0] = 𝒙𝒄 [0]. Since, R𝒒
is a metric space, at

any time-point 𝒋, the distance between N and C𝒑 is written in terms of the vector norms as,

𝒅 𝒊𝒔(N[𝒋], C𝒑[𝒋]) =

√

√

𝒒
∑︁

𝒗=1

(𝒙𝒏
𝒗 [𝒋] − 𝒙𝒄

𝒗[𝒋])2 = | | 𝒙𝒏[𝒋] − 𝒙𝒄 [𝒋] | | ≤ || 𝒙𝒏[𝒋] | | + || 𝒙𝒄 [𝒋] | | . (4)

Here, we introduce the notation 𝒅 𝝉
𝒊 , such that, 𝒅 𝝉

𝒊 = 𝒅 𝒊𝒔(N[𝒊𝒍 + 𝝉], C𝒑[𝒊𝒍 + 𝝉]) represents
the distances at various time-points. For the time-points 𝒋 = 𝒍, 2𝒍, · · · , 𝝁𝒍 , the distances are cal-
culated as 𝒅01, 𝒅

0
2, · · · , 𝒅

0
𝝁 . Similarly, at time-points 𝒋 = 𝒍+1, 2𝒍+1, · · · , (𝝁-1)𝒍+1, the distances are

𝒅11, 𝒅
1
2, · · · , 𝒅

1
𝝁-1, respectively. Continuing in this fashion, at time-points 𝒋 = 𝒍+(𝒍-1), 2𝒍+(𝒍-1),

· · · , (𝝁 − 1)𝒍+(𝒍-1), 𝒅𝝉𝒊 becomes 𝒅𝒍-11 , 𝒅𝒍-12 , · · · , 𝒅𝒍-1𝝁−1, respectively. Let us illustrate this by consid-

ering an example with 𝒍 = 4. We represent the distances 𝒅𝝉𝒊 for 𝝁 = 3 (say), i.e., up to the length

𝑻𝒖𝒃 = 3𝒍 = 12. Therefore, 𝒅𝝉𝒊 becomes 𝒅01, 𝒅
0
2, 𝒅

0
3 at 𝒋 = 4, 8, 12; 𝒅11, 𝒅

1
2 at 𝒋 = 5, 9; 𝒅21, 𝒅

2
2 at 𝒋 = 6, 10;
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and 𝒅31, 𝒅
3
2 at 𝒋 = 7, 11, respectively. Figure 5 clarifies the same. Note that the (𝒍, 𝝐)-exponential

stability criterion in Definition 1 mentions that the norm of the state vector is reduced by a factor

of 𝝐 in every 𝒍 sampling intervals, i.e,
| | 𝒙 [𝒌+𝒍 ] | |

| | 𝒙 [𝒌 ] | |
< 𝝐 , for every 𝒌 ∈ N. Hence, to capture the

(𝒍, 𝝐)-criterion on the distances 𝒅𝝉𝒊 , the length 𝒍 has to be reached at least. Using In-Eq. (4) and

Definition 1, we formally write the set of inequalities, for 𝒋 = 𝒍, 2𝒍, · · · , 𝝁𝒍 as follows.

𝒅01 = 𝒅 𝒊𝒔(N[𝒍], C𝒑[𝒍]) ≤ || 𝒙𝒏
[𝒍] | | + || 𝒙𝒄

[𝒍] | | ≤ 𝝐 ( || 𝒙𝒏
[0] | | + || 𝒙𝒄

[0] | | )

= 2𝝐 | | 𝒙𝒏[0] | | (𝒂𝒔, 𝒙𝒏[0] = 𝒙𝒄 [0]) .

𝒅02 = 𝒅 𝒊𝒔(N[2𝒍], C𝒑[2𝒍]) ≤ || 𝒙𝒏
[2𝒍] | | + || 𝒙𝒄

[2𝒍] | | ≤ 𝝐 ( || 𝒙𝒏
[𝒍] | | + || 𝒙𝒄

[𝒍] | | )

≤ 𝝐2( || 𝒙𝒏[0] | | + || 𝒙𝒄 [0] | | ) = 2𝝐2 | | 𝒙𝒏[0] | |.

Proceeding likewise, we get,

𝒅0𝝁 = 𝒅 𝒊𝒔(N[𝝁𝒍], C𝒑[𝝁𝒍]) ≤ 2𝝐𝝁 | | 𝒙𝒏[0] | | . (5)

Similarly, we consider the time-points, 𝒋 = 𝒍+1, 2𝒍+1, · · · , (𝝁-1) × 𝒍+1, and formulate another

series of in-equations, using the fact that, either 𝒙𝒄 [1] = A𝒔𝒙𝒄 [0] or 𝒙𝒄 [1] = A𝒏𝒔𝒙𝒄 [0] based
on there is/isn’t an execution skip. We assume without loss of generality that | |A𝒏𝒔 | | ≥ ||A𝒔 | |.

Hence, for an execution skip,

𝒅11 = 𝒅 𝒊𝒔(N[𝒍 + 1], C𝒑[𝒍 + 1]) ≤ || 𝒙𝒏
[𝒍 + 1] | | + || 𝒙𝒄

[𝒍 + 1] | | ≤ 𝝐 ( || 𝒙𝒏
[1] | | + || 𝒙𝒄

[1] | | )

≤ 𝝐 ( ||A𝒏𝒔 | | | | 𝒙
𝒏[0] | | + ||A𝒔 | | | | 𝒙

𝒄 [0] | | ) ≤ 𝝐 | |A𝒏𝒔 | | ( | | 𝒙
𝒏[0] | | +

||A𝒔 | |

| |A𝒏𝒔 | |
| | 𝒙𝒄 [0] | | )

≤ 2𝝐 | |A𝒏𝒔 | | | | 𝒙
𝒏
[0] | | (𝒔 𝒊𝒏𝒄𝒆, | |A𝒏𝒔 | | ≥ ||A𝒔 | | 𝒊𝒎𝒑𝒍 𝒊𝒆𝒔

| |A𝒔 | |

| |A𝒏𝒔 | |
≤ 1)

For no execution skip, 𝒅11 ≤ 𝝐 ( ||A𝒏𝒔 | | | | 𝒙𝒏[0] | | + ||A𝒏𝒔 | | | | 𝒙𝒄 [0] | | ) = 2𝝐 | |A𝒏𝒔 | | | | 𝒙𝒏[0] | | .

Thus, for both the cases of execution skip and no skip, we can state, 𝒅11 ≤ 2𝝐 | |A𝒏𝒔 | | | | 𝒙𝒏[0] | |,
and with similar arguments, 𝒅12 ≤ 2𝝐2 | |A𝒏𝒔 | | | | 𝒙𝒏[0] | | and finally,

𝒅1𝝁−1 ≤ 2𝝐𝝁−1 | |A𝒏𝒔 | | | | 𝒙
𝒏[0] | | . (6)

Generalizing the above pattern and using In-Eq. (5) and (6), we obtain,

𝒅 𝝉
𝒊 = 𝒅 𝒊𝒔(N[𝒊𝒍 + 𝝉], C𝒑[𝒊𝒍 + 𝝉]) ≤ 2𝝐 𝒊 | |A𝒏𝒔 | |

𝝉
| | 𝒙𝒏

[0] | | . (7)

where, 𝒊 = 1 to 𝝁, for 𝝉 = 0 and 𝒊 = 1 to 𝝁-1, for 𝝉 = 1 to 𝒍-1. If | |A𝒔 | | ≥ ||A𝒏𝒔 | |, then In-Eq. (7) is

modified as 𝒅 𝝉
𝒊 ≤ 2𝝐 𝒊 | |A𝒔 | |

𝝉 | |𝒙𝒏[0]| |. For very large values of 𝝁, i.e., when 𝝁 → ∞, as 𝝐 < 1, the
factor 𝝐 𝒊 → 0 (the max value of 𝒊 is 𝝁 for 𝝉 = 0 and 𝝁-1 for 𝝉 = 1 to 𝒍-1). Hence, the distance 𝒅 𝝉

𝒊
eventually approaches zero. This proves that trajectories N and C𝒑 merge after a time-point. □

In this fashion, we not only establish the safety till the infinite horizon but also obtain an upper

bound on the distance 𝒅 𝝉
𝒊 using the (𝒍, 𝝐)-exponential stability criterion. As, 𝒅 𝝉

𝒊 has to be less than

𝒅safe to ensure the control safety, this exhibits a correlation between safety and stability. Next, to

answer Q2, i.e., for obtaining the value of 𝑻𝒖𝒃 , we proceed as follows.

Corollary 1. The upper bound on the time horizon, for verifying that 𝚫(N, C) ≤ 𝒅safe holds, is

the time-point 𝑻𝒖𝒃 , where 𝑻𝒖𝒃 is given by,
⌈

ln (2 | |A𝒏𝒔 | |
𝒍−1 | |𝒙𝒏[0]| | ) − ln (𝒅safe)

| ln 𝝐 |

⌉

× 𝒍 .
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Proof. Generally, | |A𝒏𝒔 | | > 1 and hence, | |A𝒏𝒔 | |
𝝉
increases for larger values of 𝝉 , the largest

value being | |A𝒏𝒔 | |
𝒍−1

(as 𝝉 ≤ 𝒍-1). This shows, amongst the time-points, 𝒋 = (𝝁-1)𝒍+1, (𝝁-1)𝒍+2,
· · · , (𝝁-1)𝒍+(𝒍-1), the upper bound, on the distance 𝒅 𝝉

𝒊 (from In-Eq. (7)), is maximum at the point

(𝝁-1)𝒍+(𝒍-1), i.e., for 𝒅𝒍-1𝝁-1. Though it is a loose upper bound, still we specify it to be less than the

given bound 𝒅safe, in order to evaluate 𝑻𝒖𝒃 . Following this, we write,

𝒅𝒍−1𝝁−1 ≤ 2𝝐𝝁−1 | |A𝒏𝒔 | |
𝒍−1 | | 𝒙𝒏[0] | | ≤ 𝒅safe ⇒ (𝝁−1) × ln 𝝐 ≤ 𝒍𝒏

(

𝒅safe

2 | |A𝒏𝒔 | |
𝒍−1 | | 𝒙𝒏[0] | |

)

⇒ (𝝁 − 1) ≥
ln (

2 | |A𝒏𝒔 | |
𝒍−1 | |𝒙𝒏 [0] | |
𝒅safe )

ln 1
𝝐

⇒ 𝝁 ≥

⌈

ln (2 | |A𝒏𝒔 | |
𝒍−1 | |𝒙𝒏[0]| | ) − ln (𝒅safe)

| ln 𝝐 |

⌉

= 𝜶 .

At the start of the proof of Theorem 1, we initially considered the finite horizon 𝑻𝒖𝒃 = 𝝁 × 𝒍 for
any 𝝁 ∈ N. Now, using the above result, the min value of 𝝁 becomes 𝜶 and we set 𝑻𝒖𝒃 = 𝜶 × 𝒍 ,
thereby completing the proof. □

Note that the value of 𝑻𝒖𝒃 is not the exact one, but rather a loose approximation of the time

length for the control safety verification. This is because the triangle inequalities (for norms) are

used to obtain the upper bound of In-Eq. (7). In practice, it is observed that the trajectories merge

much before 𝑻𝒖𝒃 = 𝜶 × 𝒍 , when the system is not in its transient phase, i.e., when it is closer to

the settling time. Yet, a key point here is that, 𝑻𝒖𝒃 is the maximum time-point for verifying the

control safety. It is absolutely superfluous to check beyond that and this is how we come up with a

theoretical upper bound on the time horizon length in Corollary 1. Nonetheless, we derive another

riveting result that helps in avoiding the safety verification till 𝜶 × 𝒍 and do it till the settling

time only. This leads to the answer to Q3. The upper bound in Corollary 1 is directly obtained

as a consequence of Theorem 1, correlating the stability and safety notions. Now, we establish a

connection between the control safety and the settling time to provide an exact value of the horizon

length, which is much less than 𝜶 × 𝒍 .

Theorem 2. Settling time is the exact length of the time horizon for performing the safety verification,
i.e., to check whether the deviation 𝚫(N, C), between the nominal trajectory N and any CES-based
trajectory C, is less than the bound 𝒅safe.

Proof. When the system is in a settled and disturbance-free mode, i.e., for all time-points 𝒕 ≥ 𝑻𝒔 ,

where 𝑻𝒔 is the settling time, it remains within the region

√
𝒙𝑻𝒙 ≤ 𝝃𝒔 (ref. Section 5.1). Since we

deduce the stable constraint

(𝑴
𝑲

)

from the (𝒍, 𝝐)-stability criterion, which in turn is derived using

the settling time and output reference values, hence,

√
𝒙𝑻𝒙 ≤ 𝝃𝒔 holds for all 𝒕 ≥ 𝑻𝒔 and for all

trajectories corresponding to a stable constraint

(𝑴
𝑲

)

, i.e., the nominal trajectory N and also any

CES-based trajectory C following this

(𝑴
𝑲

)

. Let the corresponding state vectors for N and C be

𝒙𝒏 = (𝒙𝒏
1 , 𝒙

𝒏
2 , · · · , 𝒙

𝒏
𝒒) and 𝒙𝒄 = (𝒙𝒄

1 , 𝒙
𝒄
2 , · · · , 𝒙

𝒄
𝒒) respectively. Without loss of generality, let the

output variable be the first variable of the state vector, i.e., output 𝒚(𝒕) = 𝒙𝒏
1 (𝒕) = 𝒙𝒄

1 (𝒕) = 𝝃𝒔,∀𝒕 ≥

𝑻𝒔 . Applying inequality
√︁

𝒙𝒏(𝒕)𝑻𝒙𝒏(𝒕) ≤ 𝝃𝒔 , for N, we get,

𝒒
∑︁

𝒊=1

𝒙𝒏
𝒊 (𝒕)

2
≤ 𝝃 2

𝒔 ⇒ 𝝃 2
𝒔 +

𝒒
∑︁

𝒊=2

𝒙𝒏
𝒊 (𝒕)

2
≤ 𝝃 2

𝒔 ⇒

𝒒
∑︁

𝒊=2

𝒙𝒏
𝒊 (𝒕)

2
≤ 0

⇒ 𝒙𝒏
𝒊 (𝒕) = 0, 2 ≤ 𝒊 ≤ 𝒒, ∀𝒕 ≥ 𝑻𝒔 (𝒂𝒔, 𝒙𝒏

1 (𝒕) = 𝝃𝒔) (8)

Similarly for C,
√︁

𝒙𝒄 (𝒕)𝑻𝒙𝒄 (𝒕) ≤ 𝝃𝒔 implies 𝒙𝒄
𝒊 (𝒕) = 0, 2 ≤ 𝒊 ≤ 𝒒,∀𝒕 ≥ 𝑻𝒔 . Hence, the deviation

between N and C is actually zero after the settling time 𝑻𝒔 . Similar arguments also work for

multiple output variables, i.e., for 𝒚(𝒕) = (𝒙1(𝒕), 𝒙2(𝒕), · · · , 𝒙𝒘 (𝒕)), for some𝒘 ≤ 𝒒.
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Also, it may be the case that the output is of the form 𝒚(𝒕) = 𝜻1𝒙1(𝒕) + 𝜻2𝒙2(𝒕) + · · · + 𝜻𝒘𝒙𝒘 (𝒕),
for some 𝒘 ≤ 𝒒 and 𝜻𝒊 are given constants. Let the output reference be 𝝃𝒔 , such that, the affine

hyperplane P : 𝜻1𝒙1(𝒕) + 𝜻2𝒙2(𝒕) + · · · + 𝜻𝒘𝒙𝒘 (𝒕) = 𝝃𝒔 remains within the operating region
√︁

𝒙 (𝒕)𝑻𝒙 (𝒕) ≤ 𝝃𝒔 for all 𝒕 ≥ 𝑻𝒔 and for all trajectories following a stable constraint

(𝑴
𝑲

)

. Thus, for

all 𝒕 ≥ 𝑻𝒔 , for any point (𝒙1(𝒕), 𝒙2(𝒕), · · · , 𝒙𝒘 (𝒕)) on P, the output 𝒚(𝒕) reaches 𝝃𝒔 . We consider

the point (
𝝃𝒔

𝒘 𝜻1
, 𝝃𝒔
𝒘 𝜻2

, · · · , 𝝃𝒔
𝒘 𝜻𝒘

), which lies on P. Next, we ensure that the output variables 𝒙1(𝒕),

𝒙2(𝒕), · · · , 𝒙𝒘 (𝒕), reach the references,
𝝃𝒔

𝒘 𝜻1
, 𝝃𝒔
𝒘 𝜻2

, · · · , 𝝃𝒔
𝒘 𝜻𝒘

, respectively, for 𝒕 ≥ 𝑻𝒔 . This implies

that the output𝒚(𝒕) reaches the reference 𝝃𝒔 for 𝒕 ≥ 𝑻𝒔 . With similar equations like Eq. (8), 𝒙𝒏
1 (𝒕) =

𝒙𝒄
1 (𝒕) =

𝝃𝒔
𝒘 𝜻1

, 𝒙𝒏
2 (𝒕) = 𝒙𝒄

2 (𝒕) =
𝝃𝒔

𝒘 𝜻2
, · · · , 𝒙𝒏

𝒘 (𝒕) = 𝒙𝒄
𝒘 (𝒕) =

𝝃𝒔
𝒘 𝜻𝒘

, and 𝒙𝒏
𝒘+1(𝒕) = 𝒙𝒄

𝒘+1(𝒕) = 0, · · · ,
𝒙𝒏
𝒒 (𝒕) = 𝒙𝒄

𝒒 (𝒕) = 0, for all 𝒕 ≥ 𝑻𝒔 . Thus, 𝚫(N, C) = 0 < 𝒅safe after the settling time 𝑻𝒔 . □

With all the above deductions and findings, we conclude this phase and proceed next to construct

a schedule, which is safe and stable over an infinite time horizon.

5.3 Step 3: Construction of a Safe and Stable Schedule with SMT
Fully utilizing the processor bandwidth in a uniprocessor platform while considering a hard real-

time setting (i.e., when no execution skip/deadline miss is allowed), leads to a non-schedulable

situation more often. That is why the weakly hard real-time setting (allowing occasional deadline

misses) becomes a promising alternative for task scheduling. Having our focus on weakly hard

control systems, given the sampling periods and WCET as inputs, we construct a schedule for the

weakly hard control tasks guaranteeing the underlying stability and safety conditions. To generate

such a feasible schedule, we leverage formal methods, particularly the concept of Satisfiability
Modulo Theories (SMT), a widely used constraint-solving technique. More specifically, we formulate

an optimization problem to find a schedule that minimizes the worst-case response time (WCRT)
of control tasks. This propels the jobs to execute as soon as they arrive if there is a scope to do

so, and thereby increases the interval between the completion time and the absolute deadline of

the job. Such a way of scheduling facilitates other jobs to execute during idle time and obtain a

schedule even with very high processor utilization, which we show in Section 6.2 through extensive

experimental evaluation. Like the response time, there is another analogous parameter, named

lateness, which is either zero or negative for a feasible schedule. Larger negative values of the

lateness of a job instance signify that the job is scheduled much earlier than its deadline, hence,

minimized WCRT indicates the least value of lateness.

The scheduling problem is formulated as a set of constraints (clauses) and furnished to the SMT

solver (of type optimizer), which in turn returns a feasible schedule as the output if the set of

constraints is satisfiable. All such constraints are listed below, along with their descriptions. For

the 𝒋-th job of the 𝒊-th task, the four parameters, namely, arrival time (𝒂𝒊,𝒋), sampling period (𝒉𝒊,𝒋),

WCET (𝒄 𝒊,𝒋) and relative deadline (𝒅𝒊,𝒋) are the given inputs (ref. Section 3.5) and the parameters,

start time (𝒔𝒕𝒊,𝒋), finish time (𝒇 𝒊𝒏𝒊,𝒋) and response time (𝒓𝒆𝒔𝒊,𝒋), are determined by the solver in order

to generate the feasible schedule.

Input to the SMT-Optimizer: Sampling period 𝒉𝒊 , WCET 𝒄 𝒊 of task T𝒊, 𝒊 = 1 to 𝒏 (ref. Section 3.5)

and the set of 𝒏 safe CESs coupled with the corresponding SASSO constraints.

Output from the SMT-Optimizer: A feasible schedule.

Feasibility-Related Constraints: For a CES with 𝒎 1s in a length of 𝒌 , the 𝒎 1s indicate 𝒎 job

instances and we schedule each such job instance. For a schedulable job, the feasibility conditions

are, that its start time must succeed its arrival time (L1), the finish time must precede its absolute

deadline (L2) and the difference between the finish and start time must be equal to its WCET (L3).
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For example, let 𝒑 = 1011 is a CES specifying a control task T𝒊 with a sampling period and WCET

as 4ms and 2ms respectively. Following 𝒑, the three job instances arrive at the first, third and

fourth sampling instants. The second job arrives at the third sampling instant, i.e., at 𝒕 = 8ms

(since the first job arrives at 𝒕 = 0ms). Thus its parameters, 𝒂𝒊,2, 𝒉𝒊,2, 𝒄 𝒊,2 and 𝒂𝒊,2 + 𝒅𝒊,2 are equal
to 8ms, 4ms, 2ms and 12ms respectively. Hence, it should begin execution after 𝒕 = 8ms, execute

for 2ms and finish before 𝒕 = 12ms. The three constraints below describe the above explanation.

L1 : 𝒔𝒕𝒊,𝒋 ≥ 𝒂𝒊,𝒋 , L2 : 𝒇 𝒊𝒏𝒊,𝒋 ≤ 𝒂𝒊,𝒋 + 𝒅𝒊,𝒋 , L3 : 𝒇 𝒊𝒏𝒊,𝒋 − 𝒔𝒕𝒊,𝒋 = 𝒄 𝒊,𝒋 .

Response Time-Related Constraints: For a feasible schedule, WCRT(T𝒊)= max𝒋∈𝑱 (T𝒊 ) 𝒓𝒆𝒔𝒊,𝒋 ≤ 𝒅𝒊
must hold (ref. Section 3.5). Since, for any 𝒋-th job ∈ 𝑱 (T𝒊), 𝒅𝒊,𝒋 = 𝒅𝒊 , thus the schedule is feasible
if the response time of each job is less than or equal to its deadline. For the 𝒋-th job of task T𝒊 , the

related constraints are,

L4 : 𝒓𝒆𝒔𝒊,𝒋 = 𝒇 𝒊𝒏𝒊,𝒋 − 𝒂𝒊,𝒋 , L5 : 0 ≤ 𝒓𝒆𝒔𝒊,𝒋 ≤ 𝒅𝒊,𝒋 .

The lateness of the 𝒋-th job of task T𝒊 is defined as, 𝒍𝒂𝒕𝒆𝒊,𝒋 = 𝒇 𝒊𝒏𝒊,𝒋 − (𝒂𝒊,𝒋 + 𝒅𝒊,𝒋). Clearly, it is either
zero or a negative quantity following constraint L2.

Fig. 6. Overlaps between jobs 𝒋1 and 𝒋2

Conflict Removing Constraints: For any two job instances
𝒋1 and 𝒋2 of two different control tasks, their execution in-

tervals should be disjoint, since, exactly one job instance can

be scheduled at a time-point, in a uniprocessor system. All

possible cases of overlaps between 𝒋1 and 𝒋2, (ref. Figure 6),
are outlined below as: left partial overlap (L6), right partial
overlap (L7) and the full overlap (L8). These instances are

avoided by the solver to remove the conflicts between two

jobs, hence we write constraints in negation.

L6 : 𝑵𝒐𝒕 (𝒔𝒕𝒋1 < 𝒔𝒕𝒋2 < 𝒇 𝒊𝒏𝒋1), L7 : 𝑵𝒐𝒕 (𝒔𝒕𝒋1 < 𝒇 𝒊𝒏𝒋2 < 𝒇 𝒊𝒏𝒋1), L8 : 𝑵𝒐𝒕 (𝒔𝒕𝒋2 ≤ 𝒔𝒕𝒋1 , 𝒇 𝒊𝒏𝒋1 ≤ 𝒇 𝒊𝒏𝒋2)

Objective Function for Optimization: For each task T𝒊 , 1 ≤ 𝒊 ≤ 𝒏, WCRT(T𝒊) =max𝒋∈𝑱 (T𝒊 ) 𝒓𝒆𝒔𝒊,𝒋
is to be minimized to generate the schedule and this is formally expressed as follows.

L9 : 𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 max
𝒊 = 1 t𝒐 𝒏
𝒋 ∈ 𝑱 (T𝒊 )

𝒓𝒆𝒔𝒊,𝒋 .

Here, 𝑱 denotes the set of jobs of a task. The entire set of constraints provided to the solver is

the consolidated formula of the form of L, given as follows,

L =

(

∧

1≤ 𝒊≤𝒏

∧

𝒋∈𝑱 (T𝒊 )

∧

1≤𝜸≤5
L𝜸

)

∧

(

∧

𝒋1 ∈𝑱 (T𝒊1 ), 𝒋2 ∈𝑱 (T𝒊2 ), 𝒊1<𝒊2

∧

6≤𝜸≤8
L𝜸

)

∧

L9.

Here, the first term encompasses constraints L1 − L5, for all job instances of each task in the set

𝑻 = {T1, T2, · · · , T𝒏}. The second term exhibits the constraints, L6 − L8, for each pair of jobs 𝒋1
and 𝒋2, belonging to two different tasks T𝒊1 and T𝒊2 respectively. We eliminate the redundancy

of checking the same set of constraints twice, for the pairs (𝒋1, 𝒋2) and (𝒋2, 𝒋1), hence we add the

condition 𝒊1 < 𝒊2. The last term indicates the optimization constraint L9. If L is satisfiable, then

the SMT-optimizer reports a feasible schedule.

We generate the schedule 𝑺𝑯 till a finite time-point, 𝑯 = lcm1≤ 𝒊≤𝒏(𝒌𝒊 × 𝒉𝒊) where,
(𝒎′

𝒊
𝒌𝒊

)

and 𝒉𝒊

are the SASSO constraints and the sampling period of the 𝒊-th control task respectively. Since, each

pattern 𝒑 𝒊 repeats after a length of 𝒌𝒊 , it occurs an integer number of times within the horizon 𝑯 .

Recall that a SASSO constraint

(𝒎′

𝒌

)

ensures the control safety over its underlying SASO constraint,

which in turn is generated from a stable constraint

(𝑴
𝑲

)

for enhancing the time complexity of the
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scheduling method, without compromising the stability. Also, this SASO constraint is a special

case of the stable constraint, by construction. Therefore, to ensure both the safety and stability

of a schedule, we should not restrict ourselves to consider the schedule 𝑺𝑯 till 𝑯 only, rather we

should proceed towards 𝑯̂ > 𝑯 , where the length 𝑲 of the stable constraint

(𝑴
𝑲

)

is confirmed to be

reached (since, the system norm reduces by the damping factor 𝝐 after every 𝒍 sampling intervals

by Definition 1 and 𝑲 = 𝒍). This holds true for all the 𝒏 control systems. Consequently, to acquire a

safe and stable schedule, we consider the larger horizon, or the hyper-period 𝑯̂ = lcm1≤ 𝒊≤𝒏(𝑲𝒊×𝒉𝒊),

which is some multiple of 𝑯 , say 𝒃𝑯 . The schedule 𝑺𝑯̂ , obtained till 𝑯̂ , is both safe and stable over

an infinite time horizon, and it is just 𝒃𝑯 many repetitions of 𝑺𝑯 . Thus, the construction of the

schedule till 𝑯 suffices to obtain 𝑺𝑯̂ . Basically, we schedule a smaller number of job instances till

the length 𝑯 and precisely by replicating this ordering of the jobs, a larger number of job instances

are actually scheduled over the larger length 𝑯̂ . This simultaneously makes the scheduling process

faster and offers room to work with multiple tasks and job instances, which we also showcase

through experimental evaluation. Apart from increasing the control performance (in comparison

to that of a stable constraint

(𝑴
𝑲

)

), the SASO constraints aid to the efficiency of the scheduling

mechanism, in the above way. The obtained schedule 𝑺𝑯̂ is optimal w.r.t. WCRT and also ensures

the system’s safety and stability over an infinite time horizon, thereby it furnishes a solution to

Sub-problem 2. This wraps up the entire methodology and next, we substantiate the scalability and

the efficiency of our proposed method, with some experimental observations.

6 EXPERIMENTAL RESULTS
This section describes the experimental details, along with the results and analysis, to establish

the efficacy of the proposed method. At first, we delineate the proposed method using a case

study considering 5 benchmark control systems from the automotive domain. Next, we expand on

the scalability analysis of the proposed technique by considering 15 benchmark control systems,

followed by the experimental comparison with the state-of-the-art works. Our objective is to

demonstrate that the proposed method offers improved schedulability with a lower runtime, while

ensuring the underlying stability and safety. Such features are accomplished by the proposed

method specifically due to the following two factors: i) minimized WCRT while scheduling, and ii)

pruned SMT search space to a large extent with the safe CESs obtained from the SASSO constraints.

All the experiments described are carried out on a 64-bit Windows OS in a 2.10 GHz Intel Core-i5

machine, with 32 GB of RAM and we use MATLAB version R2020a and Z3 SMT solver [18] with

Python API for the experiments.

6.1 Working Execution of the Proposed Method
For this experiment, the control systems considered are, a second-order DC motor speed (MS)

control, a third-order cruise control (CC), a fourth-order suspension control (SC), a second-order
resistor-capacitor network (RC) and a second-order lane-following controller for an F1-tenth model
car (F1) that adjusts the steering angle [25]. The inputs to our method, viz., the system dynamics,

sampling period (𝒉), WCET (𝒄), settling time (𝑻𝒔 ), reference value (𝝃𝒔 ), maximum deviation (𝜹)
(ref. Section 5.1), safety bound (𝒅safe), are mentioned in Columns 2-8 of Table 1, respectively. If we
consider a hard real-time setting, i.e., all jobs of all the tasks meet their respective deadlines, then by

using the data of Columns 3 and 4, the utilization value would result in, 𝑼 =
∑

1≤ 𝒊≤5
𝒄𝒊
𝒉𝒊

= 1.17 > 1
leaving some tasks unscheduled. Thus, a few execution skips are required to schedule the jobs

in a uniprocessor system and this is one rationale for considering the weakly hard task setting.

Hence, for this task setup, we need to formulate the corresponding weakly hard constraints. With

the inputs in Columns 3-7, the (𝒍, 𝝐)-pair and the control execution rate 𝒓 are first calculated
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(ref. Section 5.1) to generate the stable

(𝑴
𝑲

)

constraint (ref. Definition 4). Subsequently, following

Definitions 5, 7 and 6, the SASO

(𝒎
𝒌

)

, the SASSO

(𝒎′

𝒌

)

constraints and the safe CES 𝒑 (using 𝒅safe

in Column 8 for the last two parameters) are evaluated, respectively. Columns 9-13 of Table 1

report all these parameters, which are computed in less than 1ms, since obtaining stable and SASO

constraints are constant time actions and the safety checking for
𝒌𝑪𝒎 many CESs, corresponding

to an

(𝒎
𝒌

)

, takes minimal amount of time for small values of 𝒎 and 𝒌 . The deviation between the

nominal and CES-based trajectories is computed for multiple initial states (8-10 random points on

the unit circle). The one leading to the minimum deviation is selected.

1 2 3 4 5 6 7 8 9 10 11 12 13

Plant System Dynamics h (ms) c (ms) 𝑻𝒔 (s) 𝝃𝒔 𝜹 𝒅safe (𝒍, 𝝐)
(𝑴

𝑲

) (𝒎

𝒌

) (𝒎′

𝒌

)

𝒑

F1
A = [0 6.5; 0 0]

B = [0; 19.685], C = [1 0]
20 4 0.3 0.1 0.04 0.56 (15, 0.7143)

( 10
15

) ( 2
3

) ( 2
3

)

101

SC
A = [0 1 0 0; -8 -4 8 4; 0 0 0 1; 80 40 -160 -60]

B = [0; 80; 20; -1120], C = [1 0 0 0]
15 3 0.3 2 1.717 0.8 (20, 0.7361)

( 15
20

) ( 3
4

) ( 3
4

)

0111

CC
A = [0 1 0 ; 0 0 1; -6.0476 -5.2826 -0.238]

B = [0; 0; 2.4767], C = [1 0 0 ]
10 2 1.2 30 75.5 0.06 (30, 0.7302)

( 25
30

) ( 5
6

) ( 5
6

)

101111

MS
A = [-10 1; -0.02 -2]

B = [0; 2], C = [1 0]
20 5 0.6 0.1 0.101 0.1 (15, 0.7053)

( 10
15

) ( 2
3

) ( 2
3

)

101

RC
A = [-6 1; 0.2 -0.7]

B = [5; 0.5], C = [1 0]
15 4 1.0 0.5 1.8 0.07 (16, 0.7452)

( 12
16

) ( 3
4

) ( 3
4

)

1011

Table 1. Input and output parameters of the control systems

Here, the horizon of the schedule, 𝑯 = lcm 1≤ 𝒊≤5{𝒌𝒊×𝒉𝒊} and the hyper-period 𝑯̂ = lcm 1≤ 𝒊≤5{𝑲𝒊×

𝒉𝒊} are equal to 60 and 1200 respectively. The synthesized schedule 𝑺60 has 15 job instances and
since the safe and stable schedule 𝑺1200 is just 20 repetitions of 𝑺60, hence, 300 job instances occur in
total in 𝑺1200. On receiving the input tuples {(𝒉𝒊, 𝒄 𝒊,

(𝒎′
𝒊

𝒌𝒊

)

, 𝒑𝒊)}
5
𝒊=1, the solver synthesizes 𝑺60, which

has an average lateness value of -8.067 (average over the lateness values of all the 15 jobs), ensuring
that all the five tasks (specified by the SASSO constraints) are schedulable. The total time taken to

obtain the schedule 𝑺60 (or 𝑺1200) is 0.08 s.

CASE 1: 5 plants: (CC, MS, F1, SC, RC)

𝑯 = 60 , 𝑱𝑯 =15 , 𝑯̂ = 1200, 𝑱𝑯̂ = 300

CASE 2: 7 plants: (CC, MS, LC, F1, SC, RC, TTC)

𝑯 = 60 , 𝑱𝑯 =21 , 𝑯̂ = 1800 , 𝑱𝑯̂ = 630

Util. range 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0 Util. range 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0

Actual Util. 0.73 0.76 0.80 0.82 0.9 0.93 Actual Util. 0.75 0.78 0.82 0.87 0.93 1.0

Min. Time (s) 0.120 0.100 0.100 0.070 Min. Time (s) 0.481 0.421 0.343 0.450 2.094 4.097

Avg. Time (s) 0.126 0.108 0.118 0.080

Not

Schedulable Avg. Time (s) 0.55 0.448 0.552 0.494 2.582 6.058

CASE 3: 9 plants: (RC, SC, LC, F1,

CC, MS1, TTC, VDC, MS2)

𝑯 = 60 , 𝑱𝑯 =23 , 𝑯̂ = 37,800 , 𝑱𝑯̂ = 14,490

CASE 4: 11 plants: (DCS, RC, LC, SC,

F1, CC, LK, MS1, TTC, VDC, MS2 )

𝑯 = 60 , 𝑱𝑯 =29 , 𝑯̂ = 37,800 , 𝑱𝑯̂ = 18,270

Util. range 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0 Util. range 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0

Actual Util. 0.70 0.75 0.80 0.88 0.93 0.97 Actual Util. 0.73 0.78 0.82 0.87 0.90 0.98

Min. Time (s) 0.030 0.334 0.578 1.438 1.969 3.201 Min. Time (s) 1.515 3.578 8.312 12.031 91.594 161.031

Avg. Time (s) 0.070 0.350 0.724 1.604 2.1615 3.556 Avg. Time (s) 1.547 3.620 8.328 12.219 92.724 161.836

CASE 5: 13 plants: (DCS, RC, LC, SC, F1,

CC, LK1, MS1, TTC, VDC, MS2, ACC, LK2 )

𝑯 = 60 , 𝑱𝑯 =33 , 𝑯̂ = 37,800 , 𝑱𝑯̂ = 20,790

CASE 6: 15 plants: (DCS, RC, LC, SC, F1-1, CC, LK,

MS1, TTC, VDC, MS2, ACC, LK2, SC2, F1-2 )

𝑯 = 60 , 𝑱𝑯 =37 , 𝑯̂ = 75,600 , 𝑱𝑯̂ = 46,620

Util. range 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0 Util. range 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0

Actual Util. 0.72 0.77 0.82 0.87 0.92 0.97 Actual Util. 0.72 0.77 0.83 0.87 0.92 0.96

Min. Time (s) 15.781 29.907 30.234 63.422 102.172 399.421 Min. Time (s) 478.125 661.719 2075.531 4235.438 7568.125 > 3 hrs

Avg. Time (s) 16.167 30.537 32.867 63.953 102.610 400.053 Avg. Time (s) 485.305 669.047 2230.242 4261.399 8517.031 Timed out

Table 2. Total runtime for various configurations of plants and corresponding task utilization
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6.2 Scalability Analysis of the Proposed Method
In order to demonstrate the scalability and the real-world applicability of the proposed method,

we carried out the experiments as mentioned above by increasing the number of plants and the

corresponding control tasks. Some other benchmarks considered here are, a fifth-order vision-based
lateral control (LC) system [9], a second-order vehicle dynamic controller (VDC), a second-order
trajectory tracking controller (TTC) [1], a fifth-order lane keeping (LK) system, a third-order adaptive
cruise control (ACC) and a second-order DC-servo (DCS) control system (supplement of [7]).

Objective: Here, we examine how the total runtime of the proposed method varies for different

values of the total processor utilization, for various configurations of plant-control systems.

Design of the Experiment: We set up six cases by considering various numbers of plant-control

systems, and for each such case, we devise several sub-cases by varying the total utilization (obtained

via altering the input parameter WCET of the tasks). Table 2 reports the entire data set for the

above cases. To get various plant options, in some instances the same system is considered with

different sampling periods, e.g., MS-1 and MS-2. The number of jobs scheduled till horizons 𝑯 and

𝑯̂ are denoted as 𝑱𝑯 and 𝑱𝑯̂ respectively. We report both the minimum (Min. time) and average

(Avg. Time) time (for multiple runs) to synthesize the safe and stable schedule, for different total

utilization values (Actual Util. =

∑

1≤ 𝒊≤𝒏
𝒎′

𝒊×𝒄𝒊
𝒌𝒊×𝒉𝒊

) in the range of [0.6-1.0] (Util. Range). Being an

offline scheduling mechanism, for the proposed method, we fix a time-out value of 3 hours after
which we declare the set of tasks to be non-schedulable in the processor.

Observations: We conclude the following points from the above experiment.

i) The number of jobs in 𝑯̂ , i.e., 𝑱𝑯̂ , is remarkably large for a higher number of plants, especially

for Cases 3-6. Moreover, the WCRT minimization facilitates obtaining a schedule, regardless of

very high utilization values (e.g., 0.93-1), in almost all the cases.

ii) It is also worth noting that the time taken to generate the schedule is fairly less for all utilization

values in Cases 1-3, and for Actual Util. < 0.9 in Case 4. Almost for all task and utilization

configurations, except Case 6, the average time is much less than 1 h; the highest is around 7min

for the utilization of 0.97 in Case 5. With 15 plants, in Case 6, the schedules are synthesized

within a reasonable time (in the range of 7min-38min) up to the Actual Util. < 0.85. For Actual
Util. > 0.85, we too can obtain the schedule by fixing the time-out a little higher.

This proves that the proposed method, despite of considering a higher number of control tasks

(corresponding to the plant-control systems) and job instances, can still report a feasible schedule

in a fairly reasonable time while utilizing the processor bandwidth as much as possible.
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Fig. 7. Average lateness vs utilization

Improved Schedulability: We know that for a feasi-

ble schedule, the lateness should be either negative or

zero, and for an infeasible schedule, the lateness value

becomes a positive quantity. A higher negative value

of the lateness signifies that the jobs are scheduled

as soon as they arrive if there are empty slots to do

so. This indicates a lesser WCRT, which is the objec-

tive function of our underlying optimization problem.

Specifically, this improves the scope of schedulability

in our method and thus it can schedule a large number

of job instances at higher processor utilization values.

With an increase in the total utilization, the number of such empty slots decreases and the lateness

increases, becoming less negative. The average lateness for various sub-cases of Cases 1-3 in Table

2, is shown in Figure 7. We achieve feasible schedules with a minimized WCRT, which is distinctly
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justified in the figure in terms of negative average lateness. The respective utilization values are

mentioned on top of all the bar graphs.

6.3 Comparison with the Existing Methods
Since in this work, we leverage formal methods for synthesizing the safe and stable schedule, we
refer to our proposed method as FMSS, in the rest of the paper. As our focus, in this work, is on

the triplet, (𝑺1: stability, 𝑺2: safety, 𝑺3: schedulability), we conduct the following set of rigorous

experimental comparisons with the state-of-the-art methods exploring all these three aspects,

specifically emphasizing the schedulability (𝑺3) aspect. As mentioned earlier, the literature lacks any

existing method that focuses on 𝑺1, 𝑺2, and 𝑺3 simultaneously, unlike our proposed one, therefore,

we can mostly compare existing methods considering one (two) aspect(s) at a time.

(1) Comparison focusing on 𝑺2, 𝑺3: The closest works that also consider stability and schedula-

bility together in the same context is [10]. Like [10], we consider the exponential stability criterion,

but we take into account control safety to construct a safe and stable schedule, minimizing WCRT.

On the other hand, [10] solves an ILP to generate a Pattern Guided Stable schedule, using EDF as
the underlying scheduling algorithm, but has not addressed safety analysis. We name their method

as PGS and compare with it, to prove that PGS not only lacks control safety but also falls short of

our standards, in regards to other metrics too.

A. Comparing FMSS with PGS w.r.t. Schedulability (𝑺3):

n Util. Time (s) taken
by FMSS

Time (s) taken by PGS
with stable constraints

Time (s) taken by PGS
with SASO constraints

5 0.76 0.100 80.625 0.456
5 0.82 0.070 207.547 1.344
7 0.78 0.421 10.234 0.100
7 0.82 - 1.0 ! > 1 h (Timed Out) #
9 0.70 0.030 26.219 0.077
9 0.72 - 0.97 ! > 1 h (Timed Out) #

11 0.72 - 0.98 ! > 1 h (Timed Out) #

13 0.72 - 0.92 ! > 1 h (Timed Out) #

15 0.72 - 0.85 ! > 1 h (Timed Out) #

Table 3. Comparing FMSS with the existing method PGS

Objective:To highlight the efficiency of

FMSS, we compare it with PGS in terms

of schedulability and the total runtime

to generate the schedule.

Design of the Experiment: This com-

parison is carried out by providing two

different types of inputs to PGS: a) 𝒏
stable

(𝑴
𝑲

)

constraints, and b) 𝒏 SASO

constraints for 𝒏 plant-control systems,

as exhibited in Columns 4 and 5 in Table 3 respectively. In [10], PGS considers 𝒏 stable

(𝑴
𝑲

)

con-

straints as inputs to generate a feasible schedule. Note that the setup with SASO constraints is not

a part of PGS, rather we have designed the SASO in FMSS to generate a feasible schedule faster,

along with enhancing the control performance. Since FMSS considers SASSO constraints (derived

from SASO constraints) as inputs, hence, we also examine the schedulability of PGS with SASO

constraints as inputs (SASSO cannot be an input to PGS, since it is deduced based on the safety

criterion and safety analysis is not addressed by PGS in [10]). The✓/ ✕ marks in Columns 3 and 5
denote the cases where a schedule could/couldn’t be synthesized by FMSS and PGS, respectively.

Observations: FMSS considerably outperforms PGS both w.r.t. the runtime and schedulability.

i) We observe that with stable

(𝑴
𝑲

)

constraints as inputs, PGS fails to report a schedule within

an hour (time-out taken as 1 h), even for utilization values close to 0.72, for 9 plants or

higher (Column 4). In contrast, FMSS reports a feasible schedule within 0.03 s-0.5 s in such

cases (Column 3). This mainly motivates us to construct another case by selecting the SASO

constraints as inputs, which we follow in our proposed method to work with a smaller subset.

ii) The consideration of SASO constraints results in a smaller input space for the ILP in PGS. If
(18
30
)

is a stable constraint, then for any CES following the SASO

(3
5
)

, if repeated to a length of

30, forms a subset of the collection of
30𝑪18 different CESs, obtained from

(18
30
)

. With this setup,

the runtime of PGS improves considerably; for all the cases it takes nearly equal or a little

higher runtime than our FMSS method, as shown in Column 5. Yet, in the majority of the cases,
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for increasing plant numbers and the corresponding task utilization values around the range

(0.72 − 1), PGS fails to report a feasible schedule, declaring the tasks to be non-schedulable by

EDF. In contrast, FMSS guarantees schedulability with utilization up to 95%, on average, for all

these cases (the runtime detail for each individual case is reported in Table 2). Therefore, the

construction of the SASO and minimization of the WCRT in FMSS is substantial, and clearly

[10] fails to provide better schedulability with a smaller runtime.

B. Comparing FMSS with PGS w.r.t. Safety (𝑺2):
Objective: Since control safety is not addressed by PGS in [10], we compare w.r.t. the metric, safety,

by exhibiting the violation of the safety bound, 𝒅safe, in PGS in certain cases, as opposed to ours.
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Fig. 8. Comparing control safety with PGS

Observations: A schedule generated for a set of five

tasks turns out to be unsafe in the case of PGS, as for one
of the systems, F1-tenth model car, the state trajectory

obtained by following the underlying CES 1101011010
generated by the ILP solver, deviates from the nominal

trajectory (when execution skip is not allowed), by a

value (0.714) more than 𝒅safe (0.56). On the other hand,

FMSS generates the safe CES as 10011, which when

repeated to a length of 10, forms a stable and safe CES

1001110011. With this CES the respective deviation

from the nominal trajectory is a maximum of 0.462.
Figure 8 explains this pictorially, where the deviation

at each sampling instant (multiples of 20ms) is shown

for both the methods.

This clarifies that the proposed method FMSS, surpasses PGS in terms of the metrics: schedula-

bility, total runtime and control safety.

(2) Comparison focusing on 𝑺1, 𝑺3: The closest existing methods that consider control safety

and schedulability aspects together for a weakly hard setting are [23] and [25]. Though these

methods consider the same notion of control safety as ours, they do not account for stability in

their works. Therefore, we compare FMSS and [23, 25] w.r.t. control stability (𝑺1) and schedulability
(𝑺3) (specifically, in terms of the runtime to generate a safe schedule). The work in [23] develops

the concept of Safe Constraint Synthesis to generate a safe schedule. The method described in

[25] accounts for Deterministic verification of a schedule that is constructed with safe constraints,

obtained through a probabilistic method named Statistical Hypothesis Testing (SHT) [8]. Based on

their underlying methodical structures, we refer to these methods as SCS and DSHT, respectively.
Both these methods have the limitation of ensuring control safety over an infinite time horizon

and additionally consider an automata-based construction of schedulers that also rely on equal

sampling periods for all the control tasks, making the real-world application space restricted. FMSS

overcomes both these limitations while guaranteeing the desired stability of the systems.

A. Comparing FMSS with DSHT and SCS w.r.t. Stability (𝑺1):
Objective:We compare w.r.t. stability to highlight the fact that, even though the safe constraint

synthesis ensures a minimum deviation from the ideal behavior (i.e., the nominal state trajectory),

but the underlying systems can still remain unstable.

Design of the Experiment: We consider cruise control (CC) and suspension control (SC) systems

for this comparative experiment. The controllers for CC and SC are designed using the LQR

technique with a sampling period of 20ms, as chosen in SCS and DSHT. For plant CC, DSHT

reports

(1
6
)

as safe and both SCS and DSHT declare

(1
5
)

to be safe. However, FMSS states

(5
6
)

and

(3
5
)

as the SASSOs and 111011 and 11010 as the safe CESs, for lengths 6 and 5 respectively. Similarly,
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for plant SC, according to DSHT, the constraints

(1
5
)

,

(2
6
)

are safe, and according to both DSHT and

SCS,

(2
5
)

,

(3
6
)

are safe (as reported in [23, 25]). With FMSS, we get

(5
6
)

and

(4
5
)

as SASSOs and 111011
and 11011 as safe CESs. For this experiment, we choose the CES for an

(𝒎
𝒌

)

provided by DSHT and

SCS, which is the one amongst all possible combinations that gives the best output response.

Observations: On experimenting over the CC and SC systems, we observe noticeable differences

in their output responses while selecting a safe constraint for state evolution, in contrast to the

selection of a safe CES corresponding to our SASSO constraint derived from a stable constraint.

Even with the best CES, the safe constraints of DSHT and SCS fail to ensure stability, in most cases.

i) For plant CC, Figure 9a portrays this observation for both the cases of length 5 (plots in the top

with a reference of 50 kmh
−1
) and length 6 (plots in the bottom with a reference of 20 kmh

−1
).

It is worth mentioning that the settling time achieved for the constraint

(1
5
)

returned by both

SCS and DSHT (top, red) is 4 s, whereas for

(3
5
)

as returned by FMSS (top, blue), the settling

time becomes 0.8 s only. In this case, the reference is considered as 50 kmh
−1

and marked in

the plot in Figure 9a. On the other side, for

(1
6
)

as returned by DSHT, the system doesn’t settle

(bottom, red) at all, while in contrast, for

(5
6
)

in FMSS the system settles within 1 s (bottom,

blue). In this case, the reference is 20 kmh
−1
. Hence, FMSS offers 80% and 100% improvements

in the settling time respectively.

ii) For plant SC, considering constraint

(1
5
)

as returned by DSHT, the system shows extremely

inconsistent and unstable behavior (ref. Figure 9b), with an overshoot in the range 1012m, when

its reference is 2m. Also, with

(2
6
)

(reported by DSHT) the system becomes highly unstable

(ref. Figure 9c, bottom, red). Although the system settles for constraints

(2
5
)

(top, red),

(3
6
)

(bottom, blue), as returned by DSHT and SCS, the settling times are 2.5 s and 0.5 s respectively.

In contrast, for

(4
5
)

(top, black),

(5
6
)

(bottom, black), as reported by FMSS, the system settles at

0.2 s and 0.1 s respectively. With this, there is an improvement of 92% and 80% respectively, in

FMSS, for plant SC.

Stability plays a pivotal role in designing efficient control systems and FMSS excels considerably in

regard to this metric.

(a) Plant CC (b) Plant SC (c) Plant SC

Fig. 9. Comparing output responses with unstable systems of SCS and DSHT

B. Comparing FMSS with DSHT and SCS w.r.t. Schedulability (𝑺3):
Objective: Here, we compare with the DSHT and SCS methods w.r.t. metric, total runtime required

to generate a safe schedule, to point out the efficiency of FMSS.

Design of the Experiment: For this comparison, we take the same set-up of 5 plants (ref. Table
1) as considered in [23, 25]. The only change we add is that we allow the sampling periods to be

different since we do not have any restriction to consider them equal, as opposed to [23, 25].
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Observations: As per the data reported in [25], the total time required to obtain a safe schedule by

DSHT and SCS is 13.5 s and 748.37 s, respectively. In contrast, despite considering the same set-up

for 5 plants (ref. Table 1), FMSS takes only 0.08 s to report the schedule, offering an improvement

of nearly 99.41% and 100% in runtime respectively. Moreover, unlike FMSS, for these methods,

dealing with a higher number of plants would be a practical challenge because of their heavy-

duty computations; specifically, the reachability analysis and the iterative execution of the SHT

framework (counter-example guided refinement on not obtaining a safe schedule). Also, the iterative

process of synthesizing safe

(𝒎
𝒌

)

s by calculating the upper bound on the deviation with the bounded-
tree algorithm [15], makes the complexity even worse in SCS. These justifications point to an

exponential time rise in the runtime for these methods, with an increasing number of plants and the

corresponding tasks. Hence, FMSS is undoubtedly superior and efficient in comparison with [23, 25],

also, it is quite comprehensible from the scalability analysis study reported in Table 2 of Section 6.2

(this type of scalability analysis with a higher number of plants is not reported in [23, 25]).

(3) Comparative Comments on Other Works: The only recent work that considers the SMT-

based approach for generating safe schedules for weakly hard control systems is [26]. Here, the

authors use refinements to reiterate the process of constraint solving, on obtaining a spurious trace,

until a safe schedule is observed. Instead, FMSS aims to generate a safe schedule in exactly one

iteration if it exists, which makes FMSS more effective. For a set-up of 4 control tasks, [26] reports
the runtime and memory consumption as 40 s and 48MB for the hold-and-kill policy (that we too

consider, ref. Section 3.3) using Z3 solver; while with FMSS, Z3 generates the schedule in 0.04 s

having a 20MB memory requirement, for a 4-task setup. Since the safety notion considered in [26]

is completely different from ours, there is no scope for fair comparison w.r.t. this aspect. Moreover,

as reported in [26], their work is limited to medium-sized systems; we anticipate that [26] may

suffer from higher time-complexity and memory consumption (due to the iterative refinement

process) issues while dealing with a higher number of systems simultaneously, as opposed to ours.

7 CONCLUSION AND FUTURE DIRECTIONS
This work proposes a novel approach for generating a safe and stable schedule for a set of weakly

hard control tasks preserving the desired control stability and safety guarantee. To the best of our

knowledge, this is the first work which addresses the triplet, (stability, safety, schedulability), in

the real-time control context. The state-of-the-art methods have studied either stability or safety

but not both the aspects with a harmony of real-time scheduling of control tasks. To this end, we

develop a scheduler, which even though permits tasks to miss some of their deadlines intermittently,

we still do not allow the underlying stability and safety to be compromised. Moreover, we establish

the control safety over an infinite time horizon, unlike some previous methods that consider a

bounded time horizon. To synthesize the schedule, we develop an SMT-based scheduling approach

which minimizes the worst-case response time. In contrast to existing methods, the SMT-based

approach proves itself to be time-efficient in our work. This is because we reduce the search space

of the SMT solver by selecting exactly one deadline hit-miss pattern for a task, which conforms to

a weakly hard constraint obeying both the stability and safety criteria. Additionally, with some

rigorous case studies, we demonstrate the scalability of the proposed method and its efficiency in

comparison to some existing methods, which have addressed either stability or safety. Dealing with

both stability and safety for scheduling in non-linear control systems could be an interesting next

step of this work. Moreover, establishing efficient techniques to generate an SMT-based schedule in

a reasonable time frame for a significantly large number of control tasks, is also an essential aspect

to explore in the near future. Another riveting future direction could be considering dependencies

in the task model while designing a safe and stable schedule.
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