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Abstract—Software in autonomous systems, owing to perfor-
mance requirements, is deployed on heterogeneous hardware
comprising task specific accelerators, graphical processing units,
and multicore processors. But performing timing analysis for
safety critical control software tasks with such heterogeneous
hardware is becoming increasingly challenging. Consequently, a
number of recent papers have addressed the problem of stability
analysis of feedback control loops in the presence of timing
uncertainties (cf., deadline misses). In this paper, we address
a different class of safety properties, viz., whether the system
trajectory deviates too much from the nominal trajectory, with
the latter computed for the ideal timing behavior. Verifying such
quantitative safety properties involves performing a reachability
analysis that is computationally intractable, or is too conservative.
To alleviate these problems we propose to provide statistical
guarantees over behavior of control systems with timing un-
certainties. More specifically, we present a Bayesian hypothesis
testing method based on Jeffreys’s Bayes factor test that estimates
deviations from a nominal or ideal behavior. We show that our
analysis can provide, with high confidence, tighter estimates of the
deviation from nominal behavior than using known reachability
based methods. We also illustrate the scalability of our techniques
by obtaining bounds in cases where reachability analysis fails to
converge, thereby establishing the former’s practicality.

Index Terms—Control, reachability, real-time systems, safety,
weakly-hard systems, statistical hypothesis testing

I. INTRODUCTION

Providing verifiable assurances for autonomous systems is a
challenge that has attracted considerable scientific interest [1]–
[3]. Traditionally, this involved designing suitable feedback
control loops and formally verifying their correctness. An
emerging challenge in providing such assurances for current
generation autonomous systems is providing timing guarantees
of the increasingly complex on-board hardware platforms
utilizing machine learning (ML) components. Presently, these
consist of multiple multicore processors and hardware acceler-
ators like GPUs and FPGAs. As a result, the timing behavior of
control software [4] running on them can be highly variable
because of complex interference patterns between heteroge-
neous components. Analyzing the timing behavior of such
software consists of two main steps: 1) determining the worst-
case execution time (WCET) of the code [5], and 2) using
schedulability analysis to validate the timing constraints (or
deadlines) assuming which the feedback controllers have been
designed. Unfortunately, there is now widespread consensus
that on modern hardware platforms, safe WCET estimates
cannot be guaranteed without excessive pessimism [6], [7].
This situation is further aggravated by ML components for
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Fig. 1. Deviation in the path of an F1Tenth car due to timing uncertainty.

sensor (camera, radar, lidar) processing that incur content-
dependent processing times. Hence, unless very pessimistic
WCET bounds are acceptable—which makes designs highly
over-provisioned and impractical—a certain non-determinism
in the timing behavior of software is unavoidable. This raises
the question: “What performance guarantees can be pro-
vided for feedback control loops subjected to certain non-
deterministic timing behavior?” There are various incarnations
of this question and the one most widely studied, particularly
within networked control systems, asks how to ensure stability
in the presence of uncertainties in network behavior such as
delays and dropped packets [8]–[12]. Instead of a qualitative
property like stability, in this paper we ask whether quantita-
tive properties, such as safety specification over a bounded
time horizon, hold in the presence of timing uncertainties.

A. F1Tenth Example

As an example, consider Fig. 1. It shows the trajectory of a
lane-following controller for an F1Tenth [13] model car. The
car’s steering angle and velocity are computed by a feedback
controller, designed for the car to follow a predetermined path.
Running the controller as designed, with no timing uncertainty,
results in the nominal trajectory shown in black. Around this
trajectory, there is a safety envelope shown in light blue, repre-
senting a safe space for the car to occupy without hitting any
obstacles. Due to timing uncertainties in the implementation
platform, the software task that computes the control inputs
can miss the deadline imposed by the scheduler, resulting in
deviation from the nominal trajectory. 100 such trajectories
where the control task missed its deadline are shown in the
figure—the green trajectories are safe, remaining within the
safety envelope for the entire time horizon. However, the



trajectory shown in red deviates too far from the nominal
trajectory, briefly leaving the safety envelope near x = 4,
potentially resulting in a collision with an obstacle. This
illustrates the importance of bounding deviations of control
systems if timing variations in the control software may occur.

B. Our contributions and related work

Given an ideal system behavior (when the control task
always meets its deadline), and a pattern of deadline hits
and misses, we want to estimate the maximum possible
deviation from the ideal behavior in the presence of the
allowed patterns of deadline misses over a time horizon of
length H . This involves reachability analysis of the states
visited by the trajectories of the closed-loop system in the
time interval [0, H]. This is however not a scalable problem
and our contribution is a statistical hypothesis testing (SHT)
framework, as shown in Fig. 2. In particular, we use the
Jeffreys’s Bayes factor test [14], [15] to solve our problem.

In our setup, timing behaviors of interest are specified as
patterns of hits (the deadline is met) and misses (deadline is
not met) and are assumed to constitute a regular language
over the alphabet {hit,miss}. We further assume a uniform
distribution over these strings of length H (the time horizon
of interest). This enables us to implement an efficient sampling
method based on the Recursive RGA algorithm [16]. However,
our method is applicable to other types of languages and
distributions as well, provided the runs of the system can be
efficiently sampled. In the current setup, we are given a set
of initial states of the system, a mathematical model of its
(discrete time) dynamics, and a regular language L of strings
of length H over the alphabet {hit,miss}. Our goal is to
estimate an upper bound dub on the deviation of the trajectory
induced by any string in L from the nominal trajectory induced
by the string consisting of only hits (the ideal timing behavior).
Proposed SHT framework: In our statistical hypothesis
testing framework in Fig. 2, to test if a given dub is an upper
bound for the maximum deviation, our null hypothesis H0

will assert that with at most probability c, a randomly chosen
trajectory will have a deviation bounded by dub while the
alternative hypothesis H1 will assert that with at least prob-
ability c, a randomly chosen run will have a deviation that
is bounded by dub . We then use the Jeffreys’s Bayes factor
test [14] to decide between these two hypotheses. An important
consequence of our test is, when the samples we have drawn
do not support the alternative hypothesis, they will contain a
counterexample with a deviation that exceeds the current value
of dub . This will lead to the next iteration of hypothesis testing
based on a new, larger dub . In this sense, our method is driven
by a counterexample guided refinement strategy to eventually
accept the alternative hypothesis (see Fig. 2). When we do
so, in addition to the probabilistic guarantee c, we can also
bound the type I error rate, (i.e., the probability of inferring the
alternative hypothesis when in fact the null hypothesis holds)
while type II errors [14] are not relevant in our setting.
Related work: Our work has been influenced by a recent
work [17] (and a number of preceding ones on the related
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Fig. 2. Proposed statistical hypothesis testing approach.

problem [18]–[20]) that studied how deadline misses may be
handled on an implementation platform and what impact it has
on control performance; specifically, stability. The strategies
studied in [17] include combinations of applying either a zero
or the previous control input to the plant in the case of a
deadline miss, and either killing the control task that missed
its deadline or letting it complete its execution beyond the
deadline. We instead study the impact these policies have on
the maximum deviation that a trajectory of the closed-loop
system can incur over a finite time horizon relative to the
nominal trajectory (with no deadline misses).

A sampling based statistical method is also used in [21]
to estimate the worst case (first) deadline miss probability of
tasks scheduled under a static priority scheme in a uniproces-
sor setting. Since the problem they tackle is quite different
from ours, we shall just compare here the two statistical
methods. Loosely speaking, in [21], for a given task, the
required confidence level δ and the allowed probability to fail ϵ
are first fixed. This determines s, the number of runs of the
system to be sampled. Depending on the number of samples
that are “successes” (i.e., the run encounters a first deadline
miss of the task) a probability interval ℓ ≤ p ≤ r is computed
such that |l − r| ≤ δ and P (ℓ ≤ p ≤ r) ≥ 1 − ϵ. This is
an efficient and simple method that scales well. However, in
this method, both the number of successes and failures play a
crucial role in determining the statistical strength of the test.
Hence, it is not clear how this method can be efficiently ported
to our setting, primarily due to the following reasons: (i) The
deviation bound must be iteratively explored and confidence
intervals have to be estimated at each iteration, until the user
required confidence is achieved. (ii) This method allows for
failure—in our context, failure implies a safety violation.

The related domain of statistical model checking [22] often
uses sequential hypothesis testing methods such as SPRT
(sequential probability ratio test). We have instead chosen the
Bayesian hypothesis testing approach, since the test requires
the generation of a fixed number of samples, which can be
done efficiently in our setting. A thorough survey of various
statistical model checking methods can be found in [23].

Modeling the impact of network uncertainties in the form
of time-varying or stochastic delays on control performance
has also been studied in [24]–[26]. Here again, the focus



is on stability. Finally, a number of recent papers have
addressed various aspects of the control/architecture co-design
problem [27]–[34] in domains such as automotive software
design [35], [36]. However, there has been comparatively less
work on the use of statistical techniques for the verification
of control systems [15], although they perform much better
than approximation techniques, as we show in this paper.

Salient features of the proposed method: To conclude this
section, we note that the intrinsic nature of hypothesis testing
ensures that the number of samples to be drawn depends only
on the required strength of the test and not on factors like
the length of time horizon H , or the scheduling policy that
results in deadline hits and misses. Furthermore, while we
characterize timing uncertainty using a language of deadline
hit/miss patterns, our scheme can be extended to other fine
grained types of timing uncertainty as well such as task
completion times. It is worth pointing out that verifying
quantitative safety properties for control systems is harder than
stability, a qualitative safety property. This is because stability
analysis can lean on techniques such as the existence of a
Lyapunov function and on results from stability analysis of
switched systems [11].

Organization: The remainder of this paper is organized as
follows. Section II explains our system model, followed by
the definition of the problem and a discussion of deterministic
approaches to the solve the problem in Section III. Our
hypothesis testing based framework in presented in Section IV.
Before describing our experimental results in Section VI, we
illustrate our approach on an example in Section V, where we
also provide a rationale for choosing Jeffreys’s Bayes factor
over other methods. We finally conclude by outlining some
directions for future work.

II. SYSTEM MODELLING

We study the state feedback control of discrete time-
invariant linear dynamical systems of the form x[t + 1] =
Ax[t]+Bu[t], where A ∈ Rn×n, and B ∈ Rn×p. The control
input u is computed by a periodic real-time task running on a
processor, and is assumed to be of the form u[t] = Kx[t− 1],
where K ∈ Rp×n. This can alternately be represented using an
augmented state space [37] as z[t] =

[
x[t]T ua[t− 1]T

]T
,

giving the following model:

z[t+ 1] =

[
A B
Kx Ku

]
z[t] (1)

Here, we denote the two blocks of the feedback gain matrix K
providing feedback from each of the vectors x and u as Kx ∈
Rp×n and Ku ∈ Rp×p, respectively. This augmented form
permits standard controller design techniques such as linear-
quadratic regulator (LQR) [38]. Further, it allows the plant
and controller to be represented as a single dynamics matrix.

In order to model the system behavior under a sequence
of deadline hits and misses, we use standard techniques,
similar to those in [17]. In this model, the logical execution
time (LET) paradigm is followed, i.e., a sample of the system
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Fig. 3. Transducer automaton capturing 3 maximum consecutive misses.

state at step t − 1 is used to compute the control input at
time t. A software job is released when x[t− 1] is read, and
has its deadline as when x[t] is to be read. If the job completes
on time, the control input is computed. If the job misses its
deadline, several different actions can be taken—described
below—both for generating the missing control input and for
handling the task that has missed its deadline [17].

We specify the behavior of the scheduler as an automaton
that maps the allowed patterns of hits and misses to the
accompanying plant dynamics and control inputs.

Definition 1: A transducer automaton T is a tu-
ple ⟨L,A, T, µ, ℓint⟩, defined as follows:

• L = {ℓ1, ℓ2, . . . , ℓm}: Set of automaton states.
• A: Set of scheduler actions. A = {hit,miss}
• T : The transition function, where T : L × A → L. Let
T =

{
T (ℓi, a) = ℓj

∣∣ ℓi, ℓj ∈ L, a ∈ A
}

denote the set
of all transitions of the automaton.

• µ: Associates a dynamics matrix with a transition. For-
mally, µ : T → Rn×n, where n is the dimension of the
system under consideration.

• ℓint ∈ L: Initial state of the automaton.
We sometimes refer to transducer automata as DFAs. An

example of a DFA, capturing all possible behaviors with at
most 3 consecutive deadline misses, is shown in Fig. 3. The
labels are of the form ai/Ai, where ai ∈ A and Ai is the
dynamics matrix associated to the label using the function µ.

Several policies for handling deadline misses, both in terms
of the control input to apply and how to treat the job that
has missed its deadline have been proposed in [17]. Many
control input strategies can be devised, but any such strategy
must be simple enough to be implemented on an actuator.
The two we consider here are Zero, where a control input
of 0 is applied, and Hold, where the current control input
is used again until a new one can be computed. As for the
handling of jobs that have missed their deadlines, there are
again multiple ways to handle them. Here, we consider the
Kill strategy, where the job is killed as soon as its deadline is
passed, and the Skip-Next strategy, where a job is allowed to
run to completion past its deadline, but no new job instance
may be released until this happens. By combining a strategy
for control input and real-time job scheduling, we arrive at
a single deadline miss strategy. The resulting combination
of policies, named Zero&Kill, Hold&Kill, Zero&Skip-Next,
and Hold&Skip-Next in [17], will result in different closed
loop dynamics under deadline misses. However the nominal
behaviors will be identical.

Let the plant states x[t] at time t be subsets of the metric
space (Rn, dis), where dis is a metric on Rn. We do not
impose any assumption on dis (but use the Euclidean distance



in this paper). We note that this metric applies only to the plant
state, not the augmented state vector used by a transducer
automaton. Given T , a possible behavior of the system is
defined as a run consisting of an alternating sequence of
locations and actions:

τ = {ℓ1, a1, ℓ2, . . . , aH−1, ℓH}

where ℓ1 = ℓint, ai ∈ A, and H is the time bound. Let the set
of all possible runs be τ̄ .

Next, the evolution of a run τ = {ℓ1, a1, ℓ2, . . . , aH−1, ℓH},
with an initial set x[0] ⊂ Rn is denoted as evol(τ), given by

evol(τ) =
{
x0, x[1] = A1x[0], x[2] = A2x[1], . . . ,

x[H] = AHx[H − 1]
}
.

Here, At = µ(at) and x[t] are the plant states reached at
time step t. Given evolution of a run evol(τ), let

evol(τ)[t] = x[t], for 1 ≤ t ≤ H.

We now define the distance between two sets S,R ⊂ Rn

using the standard Hausdorff distance, which we denote as

∆(S,R) = max
{
sup
s∈S

inf
r∈R

dis(s, r), sup
r∈R

inf
s∈S

dis(s, r)
}
.

Given two runs τ1, τ2 ∈ τ̄ , we define deviation between the
two runs as the maximum Hausdorff distance between the
evolution of the two runs. Formally:

Definition 2 (Deviation): The deviation between two runs τ1
and τ2 is given by:

dev(τ1, τ2) = max
1≤t≤H

{
∆
(
evol(τ1)[t], evol(τ2)[t]

)}
(2)

Finally, as mentioned in the introduction, we assume a proba-
bility distribution D over the set of runs τ̄ . Accordingly, by a
random run we shall mean a run drawn from τ̄ according to D.
In the present setting, D is the uniform distribution. However,
our analysis method is applicable to any distribution D,
provided one can effectively draw samples from D.

III. THE PROBLEM AND A DETERMINISTIC APPROACH

The analysis problem we wish to solve is as follows.
Problem 1: Given a transducer automaton T , an initial

set of plant states x[0] ⊂ Rn, and a nominal run τnom ∈ τ̄ ,
compute the maximum deviation dmax , where:

dmax = max
{
dev(τ, τnom)

∣∣ τ ∈ τ̄
}
. (3)

Assuming a time bound of H , where at each step a deadline
can either be met or missed, computing the exact maximum
deviation dmax will require computing the deviation of 2H

trajectories from the given nominal trajectory. This becomes
intractable for realistic values of H , so more efficient methods
must be used to instead approximate the value of dmax .

To this end, there are many reachability algorithms for linear
dynamical systems that can be used to safely overapproxi-
mate the maximum deviation. We propose one such approach
here, which we call RS (i.e., reachable set), as a baseline

against which we will compare our statistical hypothesis
testing approach in our experiments in Section VI.

The RS method begins by fixing a small number of time
steps m. Given an axis-aligned n-dimensional interval x[0] as
an initial set, the algorithm proceeds iteratively, computing the
reachable sets for each successive span of m sampling periods.
For the first iteration, all trajectories of length m starting from
the corners of the initial set x[0] are computed. We store the
minimum bounding box of all such trajectories at each time
step, yielding our first m over-approximated reachable sets.
At the end of each iteration, we group the runs by their final
locations in the automaton, and compute a bounding box for
each location.

Using these boxes and their corresponding locations as ini-
tial conditions, we compute the over-approximated reachable
sets for the following m time steps. This procedure is iterated
as many times as required to span the time horizon H (i.e.,
⌈H/m⌉ iterations). While the runtime of the RS algorithm is
exponential in the parameter m, it is linear in the number of
iterations. Thus by running only a small number of time steps
in each iteration, we can compute a sound over-approximation
of the reachable sets for large time horizons efficiently. From
these reachable sets, it is straightforward to compute a safe
upper bound dub ≥ dmax .

Unfortunately, this simple reachability-based approach often
produces bounds on the maximum deviation that are either
quite pessimistic, or require a large amount of execution time
(due to a large number of steps per iteration m). Thus, in
the next section, we propose the main contribution of this
work, a method to estimate the value of dmax based on
statistical hypothesis testing. As will be seen in Section VI, this
method (i) typically outperforms the RS method in scalability,
(ii) while producing much tighter deviation estimates.

IV. THE PROPOSED SHT BASED APPROACH

In this section, we present a SHT based approach to
solve Problem 1. Specifically, we propose a counterexample
guided refinement method to compute an upper bound dub

for dmax using statistical hypothesis testing. Consequently, our
estimate dub will be accompanied by a statistical guarantee.
We refer to dev(τ, τnom) as deviation of the run τ .

The inputs to our algorithm that estimates dub are a DFA T
that models the behavior of scheduler, the initial set of plant
states x[0], a time horizon H , and the nominal behavior τnom .
A network of three modules as illustrated in Fig. 2 will
constitute our algorithm. Before we describe each module in
detail, we provide a brief overview of the modules constituting
the main approach, as follows.
Hypothesizer: Using the heuristics described in Sec-

tion IV-A, we guess an initial dub . This is then sent to
the Verifier module.

Verifier: This module statistically verifies—using K ran-
domly drawn sample runs—whether the given dub is
indeed an upper-bound with the required probability (say,
≥ 0.99). If dub is accepted, it is returned as our final
answer. If not, dub is sent to the Refiner module.



The details of the Verifier module are presented in
Section IV-B.

Refiner: This module pads the deviation bound obtained
from the counterexample with slack ϵ, it is set to be the
new dub and sent to the Verifier. This will initiate
the next round of hypothesis testing.

A. Hypothesizer: Guessing an upper-bound on deviation

To guess an initial upper bound, we observed that a small
set of randomly chosen samples can sometimes provide a
reasonably good representation of the actual distribution. Thus
our initial guess consists of the following steps, with R and ϵ
being parameters supplied by the user:

1) Let S = {τ1, τ2, . . . , τR} be a set of randomly generated
runs sampled according to the given distribution over the
set of strings of length H specified by the DFA.

2) Let d′
ub = maxτ∈S

{
dev(τ, τnom)

}
.

3) Return dub = d′
ub + ϵ.

We will refer to this heuristic as SmallSample(·)[R,ϵ].

B. Verifier and Refiner: Validating and refining the
bound on deviation

Here we describe how the hypothesis test is carried for a
given value of dub and a parameter c ∈ (0, 1) representing the
strength (probability) with which the user wishes to assert that
dub is an upper bound. We use Bayesian hypothesis testing
based on Jeffreys’s Bayes factor [15]. Accordingly we first
formulate the null and alternative hypotheses:

H0 : Prob [T , x[0], τnom ,dub ] < c (4)
H1 : Prob [T , x[0], τnom ,dub ] ≥ c (5)

Here Prob [T , x[0], τnom ,dub ] denotes the probability that
a randomly drawn sample has a deviation that does not violate
the upper bound dub . Our goal is to determine an upper bound
for which the alternative hypothesis is accepted.

First we fix a sufficiently high value (say 105) for the Bayes
factor B which we will soon define. Using the Bayes factor B
and probability c we shall compute K, the number of samples
needed to choose between the null and alternative hypotheses,
whose derivation we will detail below. We next draw K
samples X = {τ1, τ2, . . . , τK} according to the distribution
assumed over the set of executions. We then check if every
member of X satisfies the upper bound dub . If yes, we accept
the alternative hypothesis and return dub as the estimated
upper bound. If not, we send the first counterexample encoun-
tered to the Refiner module. Using this counterexample,
the Refiner module will extract a new bound estimate d̂
(guaranteed to exceed the current value of dub), set it to be dub

(after adding a padding factor ϵ) and send it to the Verifier
for the next round of hypothesis testing.

We will illustrate the relationship between the Bayes factor
B, confidence c, and the number of samples to be generated
K. Let X = {τ1, τ2, . . . , τK} be a set of random runs, such
that the maximum deviation exhibited by each τi ∈ X is

bounded by dub . The probability that dub is valid, given the
null hypothesis, is

Pr [∀τ ∈ X : dev(τ, τnom) ≤ dub |H0] =

∫ c

0

qK dq. (6)

Similarly, the probability that dub is valid, given the alternative
hypothesis, is

Pr [∀τ ∈ X : dev(τ, τnom) ≤ dub |H1] =

∫ 1

c

qK dq. (7)

The Bayes Factor is the ratio of the above two probabilities:

Pr [∀τ ∈ X : dev(τ, τnom) ≤ dub |H1]

Pr [∀τ ∈ X : dev(τ, τnom) ≤ dub |H0]
=

1− cK+1

cK+1
(8)

Bayes Factor is the strength of evidence favoring alternative
hypothesis over null hypothesis. In Jeffreys’s Bayes Factor
test, we enforce that the ratio computed in Equation 8 is
greater than the Bayes factor B provided by the user. Thus
a sufficiently high value of the Bayes Factor indicates that
the evidence favors the alternative hypothesis over the null
hypothesis. Given B, we can now compute the required
number of samples K as:

1− cK+1

cK+1
> B ⇐⇒ K > − logc(B + 1) (9)

We call this procedure VerifierB(H0, H1), where H0

and H1 are the null and alternative hypothesis, respectively.
Our hypothesis testing procedure coupled to a counterexample
guided refinement method is listed in Algorithm 1.

Algorithm 1: Computing upper bound on the deviation
as defined in Eq. (3)

input : A transducer automaton T , initial set x[0], nominal run
τnom , time bound H

output: Compute an upper bound dub for dmax

/* we assume parameters R, ϵ, B and c are provided by the user. */
1 dub ← SmallSample(T , x[0], τnom )[R,ϵ]; // initial guess
2 H0 ← Prob [T , x[0], τnom ,dub ] < c; // form H0 using Eq. (4)
3 H1 ← Prob [T , x[0], τnom ,dub ] ≥ c; // form H1 using Eq. (5)
4 res ← VerifierB(H0, H1); // perform statistical verification
5 if res = True then
6 return dub ;

7 while True do
8 dub ← Refiner(res)ϵ; // refine using the counter example
9 H0 ← Prob [T , x[0], τnom ,dub ] < c; // refine H0 with new dub

10 H1 ← Prob [T , x[0], τnom ,dub ] ≥ c; // refine H1 with new dub

11 res ← VerifierB(H0, H1); // re-perform statistical verification
12 if res = True then
13 return dub ;

We conclude this subsection by bounding type I errors,
i.e., where the alternative hypothesis accepted but the null
hypothesis actually holds. According to [15], the type I error
rate is bounded by:

err(B, c) =
c

c+ (1− c)B
.

We also note that our iterative procedure terminates only
when the alternative hypothesis is accepted. Hence, type II
errors (where the null hypothesis is accepted when the the
alternative hypothesis actually holds) are not relevant.
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Fig. 4. The steps performed by Algorithm 1 to compute a deviation bound
with a desired confidence. The nominal trajectory is shown in green, randomly
generated trajectories are shown in black, and dub is shown in light blue.

V. ILLUSTRATION OF THE PROPOSED APPROACH AND
ADVANTAGES OF JEFFREYS’S BAYES FACTOR

In this section, we demonstrate how the three modules de-
scribed in Section IV, namely Hypothesizer, Verifier,
and Refiner, are used by Algorithm 1 to compute an upper
bound on the deviation (dub) with a probabilistic guarantee.
This is to intuitively demonstrate our main approach on the
following illustrative example:

x[t+ 1] =

[
0.1 0.2
0.2 0.1

]
x[t] +

[
0.1
0.2

]
u[t]

u[t] =
[
0.05149186 0.4189839

]
x[t]

We will compute the maximum deviation from a nominal
trajectory with no deadline misses, starting from the initial
state x[0] = [10 10]T . We assume that no more than two
consecutive deadline misses occur up to our time bound H =
5. Using the Hold&Skip-Next policy, we can accordingly
construct a transducer automaton representing this behavior
of the scheduler and dynamical system. Given these inputs,
Algorithm 1 performs the following steps to compute the
maximum deviation, illustrated in Fig. 4.
Step 1: The first module invoked by Algorithm 1 is the
Hypothesizer, which guesses an upper bound dub to be
the maximum deviation. To do so, the module considers the
following two random sequences of deadline hit/miss: 01001,
00111 (0 indicates miss, 1 indicates hit). It computes the max-
imum deviation from the two random samples, dub = 0.1462.
Step 2: Next, the guessed upper bound dub = 0.1462 is
verified by invoking the module Verifier. The Verifier

module, pre-tuned with B = 4.15 × 105 and c = 0.99,
returns False, i.e., the upper bound dub = 0.1462 is not
verified to be correct with the desired probabilistic guarantees.
Step 3: Since the guessed bound dub was not verified,
Algorithm 1 next invokes the Refiner module with the coun-
terexample. Refiner updates the previous dub = 0.1462 to
dub = 0.2262 (by padding a fixed constant of 0.001 on top
top of the deviation bound obtained from the counterexample).
Step 4: The refined upper bound dub = 0.2262 is again
sent to the Verifier module for re-checking. This time,
the Verifier module accepts the dub = 0.2262 as a valid
upper bound up-to the desired probabilistic guarantees.
Step 5: The final dub = 0.2262 is returned as the maximum
deviation (with the desired probabilistic guarantees).

Having illustrated the steps performed by our algorithm on
a simple example, we argue in the following subsection why
we chose Jeffreys’s Bayes factor over other methods.

A. Reason for Choosing Jeffreys’s Bayes Factor

In theory, it is possible to use other hypothesis testing
methods, such as sequential hypothesis testing. However, for
this work, Jeffreys’s Bayes factor enjoys several advantages.
1) Our method imposes no restriction on the distribution. It
merely requires that samples can be drawn from the distri-
bution at random. 2) In sequential hypothesis testing, unlike
our method, the number of required samples cannot be fixed a
priori. 3) Multiple counterexamples can be encountered during
random sampling in a round of sequential hypothesis testing,
allowing known counterexamples to be explored. In our setting
a counterexample represent a violation of a safety property
estimate and accordingly Jeffreys’s Bayes factor does not
allow such known counter examples. 4) Similar to sequential
hypothesis testing, our method is independent of the sample
space size once the desired confidence (on the answer) is
provided by the user.

VI. EXPERIMENTAL EVALUATION

We implemented our Algorithm 1 in a Python-based pro-
totype tool, named StatDev. The tool and the models are
available through a public GitHub repository1. For dis(·) we
use the 2-norm. As mentioned in the introduction, to generate
uniform random samples for a given transducer automaton,
we implemented the Recursive RGA algorithm [16], [39].
We demonstrate the applicability of our method given in
Algorithm 1 on four standard examples: an RC network [40],
an electric steering application [17], an unstable second-order
system [17] and a F1Tenth car model [13]. For these examples
we investigate the following questions. Q1: What impact do
the different scheduling policies have on on the computed
deviations? Q2: What effect does the probabilistic guarantee c
have on the computed deviation? Q3: How do our statistically
computed deviations compare to the results obtained using
the RS method? Recall that RS refers to the deterministic
reachable set based method described in Section III.

1https://github.com/bineet-coderep/StatJitteryScheduler



The following parameters were used in our study: R = 50,
ϵ = 10−3, B = 4.15×105, an initial state of (10, 10) and time
bound H = 150. Since Algorithm 1 is stochastic, we execute
it over several trials (50 in this case) and report the mean
and the standard deviation (SD) of the obtained dub values.
For instance, 5 (0.3) means that the mean value of dub = 5
with SD 0.3, and the reported computation time is the average
computation time taken.

The DFAs we consider enforce constraints of the form “at
most k consecutive misses”. But any other form of constraints,
as long as they are regular, could also be used. We denote these
DFAs as {Tk} with k ranging over {1, 2, 3}. For most of the
experiments, the DFA T3 was used.

The main results are summarized in Table I: our statistical
method almost always computes tighter bounds than RS,
except for the F1Tenth example. For unstable systems and
and F1tenth, RS seems to have an exponential increase in
computation time, whereas our statistical method scales much
better (note that RS fails to compute a bound within an hour).

A. Benchmarks
1) RC network: The RC network is given by the following

state space equations.

x[t+ 1] =

[
0.5495 0.07240
0.01448 0.9332

]
x[t] +

[
0.3781
0.05234

]
u[t] (10)

Assuming nominal timing behavior of the control software,
the feedback controller computed using LQR is

u[t] =
[
0.09772 0.2504 0.07805

] [x[t− 1]
u[t− 1]

]
. (11)

Using the matrices from Eqs. (10) and (11), we construct
a transducer automaton for different deadline miss strategies.
We used T3 to specify the scheduler.

2) Electric steering: The electric steering example is given
by the following state space equations.

x[t+ 1] =

[
0.5495 0.07240
0.01448 0.9332

]
x[t] +

[
0.3781
0.05234

]
u[t] (12)

Optimal feedback controller for this system under nominal
timing behavior computed using LQR is:

u[t] =
[
0.09772 0.2504 0.07805

] [x[t− 1]
u[t− 1]

]
. (13)

As before, using the matrices from Eqs. (12) and (13), we
construct a transducer automaton for different deadline miss
strategies. We used T3 to specify the scheduler.

3) Unstable second-order system: The unstable second-
order system example is given by the following state space
equations.

x[t+1] =

[
1.1053 0
−0.0209 0.99

]
x[t]+

[
0.0526 0.0105
0.0393 0.0994

]
u[t] (14)

The control input u[t] is computed as

u[t] =

[
4.7393 0.2430
0.2277 −0.8620

]
x[t− 1]. (15)

Using the matrices from Eqs. (14) and (15), we construct a
transducer automaton T1 to specify the scheduler.

4) F1Tenth: The model of an F1Tenth car [13] was lin-
earized and the following state space equations were obtained.

x[t+ 1] =

[
1 0.13
0 1

]
x[t] +

[
0.02559
0.3937

]
u[t] (16)

The control input u[t] is computed as

u[t] =
[
0.2935 0.4403

]
x[t− 1]. (17)

Using the matrices from Eqs. (16) and (17), we construct a
transducer automaton T3 to specify the scheduler.

B. Results

The main results addressing (Q1) and (Q3) are summarized
in Table I. For the RC network, electric steering and F1Tenth,
T3 (i.e., the constraint “at most 3 consecutive misses”) was
used with c = 0.99. Since the third system is an unstable
open loop system, missing too many deadlines would cause
the deviation bound to increase drastically; therefore, we only
consider T1 (i.e., the constraint “at most 1 deadline miss
consecutively”).

To address (Q2), we fixed R = 10 and using T3 for RC
network, electric steering, F1tenth, and T1 for the unstable
second order system, we varied c (the probabilistic guarantee)
from 0.51 to 0.99. The resulting mean values of dub and 95%
confidence interval are shown in Fig. 5. Below we discuss the
results in detail for all the examples.

1) RC network: We now discuss the results obtained for
the RC network example. Q1: Considering at most 3 con-
secutive deadline misses allowed, we computed the maximum
deviation dub , with scheduling policies Hold&Kill, Zero&Kill,
Hold&Skip-Next and Zero&Skip-Next, as 1.898 (0), 1.898 (0),
1.819 (0), 1.621 (0) respectively. The details are given in
Table I. In this particular example, Zero&Skip-Next shows the
least deviation bound. Plots for this example is not shown due
to space limitations. Q2: Considering at most 3 consecutive
deadline misses allowed and R = 10, we gradually varied c
from 0.51 to 0.99. We observe that the mean dub increases
with increase in c, as expected, and stabilizes at a high
probability. Also, note that with low values of c, we witness
a wider 95% confidence interval, which narrows down to 0
as c increases. Plots for this example are not shown due to
space limitations. Q3: The results show (see Table I) that the
stochastic method returns tighter bounds than the RS method.
However, the computation time is higher but still quite small,
i.e, under 3 s.

2) Electric steering: We now discuss the results obtained
for the electric steering example. Q1: Similar to our previous
example, considering at most 3 consecutive deadline misses
allowed, we computed the maximum deviation dub , with the
scheduling policies (detailed results in Table I). The safety
envelope is shown in Fig. 6a, using the Hold&Skip-Next policy,
and c = 0.99. Further, in Fig. 6a, we show possible safety
violation that might occur when the number of consecutive
deadline misses just increases by 1, i.e., considering at most
4 consecutive deadline misses. The red dotted line in Fig. 6
shows the safety violation (with the existing safety envelope)



TABLE I
RESULTS COMPARING OUR PROPOSED STATISTICAL METHOD TO THE RS METHOD ON FOUR EXAMPLES

Example Statistic Hold&Kill Zero&Kill Hold&Skip-Next Zero&Skip-Next

RC network

dub (Alg. 1) 1.898 (0) 1.898 (0) 1.819 (0) 1.621 (0)
dub (RS) 1.90 1.90 1.90 1.90
Time Taken (Alg. 1) 2.3 s 2.03 s 3 s 2.53 s
Time Taken (RS) 0.68 s 0.78 s 2.27 s 2.37 s

Electric
Steering

dub (Alg. 1) 3.809 (0) 7.835 (0.15) 4.65 (0) 7.207 (0.203)
dub (RS) 12.37 13.63 12.38 13.75
Time Taken (Alg. 1) 1.68 s 5.29 s 3.26 s 7.03 s
Time Taken (RS) 30.8 s 685 s 2845 s 2864 s

Unstable
second-order

dub (Alg. 1) 3.552 (0) 11.124 (0.71) 7.065 (0) 9.784 (0.49)
dub (RS) timed out timed out timed out timed out
Time Taken (Alg. 1) 2.28 s 5.55 s 2.17 s 4.05 s
Time Taken (RS) timed out timed out timed out timed out

F1Tenth

dub (Alg. 1) 8.763 (0) 15.928 (0.55) 14.2 (0.65) 14.02 (0.5)
dub (RS) 6.01 timed out timed out timed out
Time Taken (Alg. 1) 2.02 s 5 s 7.19 s 6.08 s
Time Taken (RS) 1569 s timed out timed out timed out
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Fig. 5. Mean values of dub (navy) and 95% confidence interval (light blue) with varying probabilistic guarantee c on the computed bound.
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Fig. 6. Safety envelopes at a distance of dub from the nominal trajectory, with random trajectories with one extra consecutive deadline miss.

that might occur if the consecutive deadline misses increases
by 1. The safety envelope highlighted in red shows the
violating envelope. The behavior would have been safe if the
trajectory (in red) was within the highlighted safety envelope
(red), whereas it actually stretches outside to the point marked
in ‘×’ (red). Q2: Considering at most 3 consecutive deadline
misses allowed and R = 10, we gradually varied c from
0.51 to 0.99. The result is given in Fig. 5a. We observe
that the mean dub increases with increase in c, as expected,
and stabilizes at a high probability. Also, note that with low
values of c, we witness a wide 95% confidence interval, which

narrows down to 0 as c increases. Q3: As given in Table I,
we compute tighter values of dub and in less time.

3) Unstable second-order system: We now discuss the
results obtained for the unstable second-order system example.
Q1: Unlike to our previous examples, Since the third system
is an unstable open loop system, missing too many dead-
lines would cause the deviation bound to increase drastically;
therefore, we only consider T1 (i.e. the constraint “at most
1 deadline miss consecutively”). We computed the maximum
deviation dub with the scheduling policies (see Table I). The
safety envelope is shown in Fig. 6b, using the Hold&Skip-Next



policy, along with a violating trajectory when the constraint
changes to T2. Q2: Considering at most 1 consecutive deadline
miss allowed and R = 10, we gradually varied c from 0.51
to 0.99. The result is given in Fig. 5b. We observe similar
behavior as other examples. Q3: The RS method, for this
specification, was not able to compute a bound in an hour.
While our proposed method computed the bounds for all
scheduling polices under 6 s.

4) F1Tenth: We now discuss the results obtained for the
F1tenth example. Q1: Similar to the first two examples,
we computed the maximum deviation dub with the schedul-
ing policies, considering at most 3 consecutive deadline
misses. The safety envelope is shown in Fig. 6c, using the
Hold&Skip-Next policy, and c = 0.99. Further, in Fig. 6c,
we show possible safety violation that might occur when the
number of consecutive deadline misses increases by 1 (at most
4 consecutive deadline misses). Q2: Unlike other examples,
where the width of the 95% confidence interval decreases
sharply, in the F1Tenth example the decrease is not as drastic
as other examples. This is shown in Fig. 5c. For F1Tenth, we
further increased the value of c to 0.9999, and still witnessed
non-zero standard deviation unlike other examples. However,
following the method of [17], we computed an upper-bound
on the joint spectral radius and found the system with at
most three deadline consecutive misses is stable. This suggests
that even though the overall behavior of the system is stable,
the system possibly behaves erratically prior to obtaining
stability—that is, the variance of the deviation obtained for
various behaviors (w.r.t. deadline hits and misses) is very
high. To put it differently, the deviation obtained from two
different sequences of deadline hits and misses can be very
different. Q3: The RS method, except for Hold&Kill was
not able to compute a reasonable bound on the deviation.
Whereas our proposed method computed reasonable bound
(but the computed bound was, however, tighter than the bound
computed using our method), for all policies, under 8 s.

C. General Observations

In this subsection, we draw general observations from our
experiments that might help the users to tune this method
according to their application. In other words, the following
observations are drawn to provide a rule of thumb to choose
the parameters and gather insights: 1) Revisit (Q1). 2) Revisit
(Q2): The parameter c (confidence on the deviation). 3) Re-
visit (Q3): When to use a traditional method (RS) over our
statistical method. 4) How to choose the parameter R.

Revisit (Q1). We observe (from Table I) that there is no
one scheduling policy that performs consistently well (in
terms of smaller deviation bounds) across all the benchmarks.
This suggests that the choice of scheduling policy should
be made according to the given application. Revisit (Q2):
Choice of c. A good strategy is to use a high value of c,
so that the standard deviation is low and further increases
in c will have minimal effect. We note, however, that the
unstable second-order and the F1Tenth example with at most
3 consecutive deadline misses fail to achieve a low standard

deviation even with c = 0.99. Revisit (Q3): Choice of method
to be used. For small dimensional stable systems, like the
RC network, traditional methods might work well. However,
for unstable systems they are likely to perform poorly due
to coarse over-approximations. The exception is the F1Tenth
system for which the RS method was able to compute a tighter
bound while taking a longer time. In such cases our statistical
method will perform better and yield tighter bounds in lesser
time. Choice of R. As our method is stochastic, for smaller
values of R (and highly chaotic systems), the initial dub guess
can vary greatly (for different trials). And when such an initial
guess is being verified with a low probability c, the chances
of the initial guess being accepted is very high. Therefore the
SD for low values of c is also high, and the obtained bound
dub is not guaranteed to be monotonic.

Further, we make general comments on Fig. 5 and Fig. 6 as
follows. Varying the value of c (Fig. 5). We observe that for
lower values of c, the mean values of dub are lower but the
95% confidence interval are wider, however, as c increases
the mean values of dub increase whereas the width of the
95% confidence interval decreases sharply, except for F1Tenth
where the decrease is not as drastic as other examples. For
F1Tenth, the computed joint spectral radius showed the system
with at most three deadline consecutive misses to be stable,
suggesting the system behavior is possibly erratic prior to
obtaining stability. Note that we have not shown the plot for
RC network due to space limitations, and as its behavior is
similar to that of electric steering. We further note that the
computed mean deviation bound is not monotonic in any of
the examples. At lower values of c, the confidence interval is
wider, therefore the variance on the computed bound is much
higher at lower values of c. The computed bound is however
observed to be stabilizing with narrow 95% confidence interval
at only higher values of c, except for the F1Tenth example.
Again, the value of c at which the computed mean bound
stabilizes is application specific. For instance, in case of
electric steering the value of c at which the bound stabilizes
is much higher than the one required for unstable second-
order system. Safety envelope (Fig. 6). In this figure, we show
the computed deviation bounds using the Hold&Skip-Next and
c = 0.99. In other words, for electric steering and F1Tenth,
all the trajectories satisfying the T3 constraint will be within
the computed safety envelope in cyan (with a probabilistic
guarantee). Similarly, for the unstable second order system we
used the constraint T1. We observe that for the electric steering
example, the violating point (marked with ‘×’ in red) is closer
to violating safety envelope (highlighted in red) than the other
two examples—this might be due to that fact that electric
steering behaves less erratically than the other two examples.
Further, we evaluated the robustness of the system w.r.t the
computed safety envelope, by changing the constraint from T3
to T4 for electric steering and F1Tenth, and from T1 to T2 for
unstable second order system. The violation is shown in red.
Note that we timed out while computing a violating trajectory
for the RC network example—indicating better robustness than
other examples. Using Fig. 5 to compute Fig. 6. Note that



Fig. 5 suggests a heuristic to choose a value for c (at which the
mean stabilizes with a narrow 95% confidence interval). Once
such a c is chosen, the safety envelope should be computed,
as in Fig. 6, using that value of c.

VII. CONCLUDING REMARKS

We have shown that quantitative dynamical properties of
closed loop control systems can be verified using statisti-
cal hypothesis testing. The results obtained are approximate
ones (just like traditional deterministic approximation methods
are) but are accompanied by probabilistic guarantees. The
computational effort required depends mainly on the required
confidence level and to a certain extent on the work required to
draw the samples. Here, for the sake of being able to compare
our method with prior studies, we have restricted ourselves to
simple deadline hit-miss patterns as well as low dimensional
linear systems. In the future, we plan to consider richer lan-
guages as well as high dimensional and non-linear systems. We
also plan to study deviations from properties specified using
temporal logics like BLTL (Bounded Linear Time Logic) [23].
This will help capture a richer set of quantitative properties
that autonomous systems are often required to satisfy—e.g.,
the system must avoid certain regions but must also visit
some other locations with a specified frequency. In such
settings too we expect our Bayesian hypothesis testing based
method to play a useful role. Finally, the counter example
guided statistical hypothesis testing can be applied to black-
box systems where obtaining a precise model is challenging.
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[4] A. Masrur, S. Drössler, T. Pfeuffer, and S. Chakraborty, “VM-based
real-time services for automotive control applications,” in 16th IEEE
International Conference on Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA), 2010.

[5] P. Axer et al., “Building timing predictable embedded systems,” ACM
Trans. Embedded Comput. Syst., vol. 13, no. 4, pp. 82:1–82:37, 2014.

[6] L. Thiele and R. Wilhelm, “Design for timing predictability,” Real-Time
Systems, vol. 28, no. 2-3, pp. 157–177, 2004.

[7] R. Wilhelm, “Real time spent on real time,” Commun. ACM, vol. 63,
no. 10, pp. 54–60, 2020.

[8] P. Pazzaglia et al., “Beyond the weakly hard model: Measuring the
performance cost of deadline misses,” in 30th Euromicro Conference on
Real-Time Systems (ECRTS), 2018.

[9] D. Soudbakhsh et al., “Co-design of arbitrated network control systems
with overrun strategies,” IEEE Trans. Control. Netw. Syst., vol. 5, no. 1,
pp. 128–141, 2018.
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