
MoULDyS: Monitoring of Autonomous Systems in the

Presence of Uncertainties

Bineet Ghosha, Étienne Andréb,c

aThe University of North Carolina at Chapel Hill, NC, USA
bUniversité de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

cUniversité Sorbonne Paris Nord, LIPN, CNRS UMR 7030, F-93430 Villetaneuse,
France

Abstract

We introduce MoULDyS, that implements efficient offline and online monitor-
ing algorithms of black-box cyber-physical systems w.r.t. safety properties.
MoULDyS takes as input an uncertain log (with noisy and missing samples), as
well as a bounding model in the form of an uncertain linear system; this lat-
ter model plays the role of an over-approximation so as to reduce the number
of false alarms. MoULDyS is Python-based and available under the GNU Gen-
eral Public License v3.0 (gpl-3.0). We further provide easy-to-use scripts
to recreate the results of two case studies introduced in an earlier work.

Keywords: energy-aware monitoring, cyber-physical systems, formal
methods, monitoring tool.

1. Motivation and Significance1

Monitoring consists of analyzing system logs, e.g., for detecting safety2

violations (see, e.g., [4]). Monitoring has many useful applications such as3

detecting the cause of a crash of vehicles. As an example, autonomous sys-4

tems are generally equipped with a device that records their state at periodic5

or aperiodic time steps—logging the behavior of the system until the time6

of a failure. A log, comprising of such recorded samples, is then investigated7

for possible safety violations. Not only the logs can have samples missing at8

various time steps, but also the recorded samples can have added noise to9

it, e.g., due to sensor uncertainties. Analyzing such logs to detect possible10

safety violations, that might have caused a failure, is known as offline mon-11

itoring when the analysis is done a posteriori (see, e.g., [5]). In contrast, it12

is online when performed on-the-fly, when the whole log is not (yet) known13

(see [6] for a discussion on online verification).14

Preprint submitted to Science of Computer Programming July 6, 2023



Nr. Code metadata description Please fill in this column
C1 Current code version v1.1
C2 Permanent link to code/repository

used for this code version
https://github.com/bineet-coderep/MoULDyS/

releases/tag/v1.1

C3 Permanent link to Reproducible
Capsule

10.5281/zenodo.7888502

C4 Legal Code License GNU General Public License v3.0
(gpl-3.0) [1]

C5 Code versioning system used git

C6 Software code languages, tools, and
services used

Python, numpy, scipy, mpmath,
pandas, Gurobi

C7 Compilation requirements, operat-
ing environments and dependencies

Provided in the installation
guide [2].

C8 If available, link to developer docu-
mentation/manual

Provided in the user guide [3].

C9 Support email for questions bineet@cs.unc.edu

Table 1: Code metadata

x

t

(a) Full samples

x

t

(b) Monitored

x

t

(c) Extrapol

x

t

(d) Extrapol

x

t

(e) Safety

x

t

(f) Uncertain

Figure 1: Monitoring at discrete time steps [9]

We introduce here MoULDyS1 (see Table 1 for code metadata), a monitor-1

ing tool to analyze logs to detect possible safety violations. The specific fea-2

tures of MoULDyS are twofold: 1) the possibility to monitor aperiodic logs, or3

periodic logs with missing samples, and with possible noise over the recorded4

data; and 2) the presence of a bounding model following the formalism of5

uncertain linear systems.6

Uncertain linear systems. Uncertain linear systems [7, 8] are a special sub-7

class of non-linear systems that can be used to represent uncertainties and8

parameters in linear dynamical systems—for example, they can represent un-9

certain parameters in the cells of the dynamics matrix. Such a formalism is10

useful in representing an over-approximation of the model when the precise11

model is unknown or hard to obtain.12

1https://sites.google.com/view/mouldys

2

https://github.com/bineet-coderep/MoULDyS/releases/tag/v1.1
https://github.com/bineet-coderep/MoULDyS/releases/tag/v1.1
https://www.doi.org/10.5281/zenodo.7888502
https://sites.google.com/view/mouldys


Monitoring using uncertain linear systems as a bounding model. A challenge1

when performing offline monitoring is to “recreate” or guess the samples at2

the missing time steps. That is, when the system under monitoring is a3

black-box, with a log in the form of an aperiodic timed sequence of valua-4

tions of continuous variables (with missing valuations at various time steps):5

how to be certain that in between two discrete valuations the specification6

was not violated at another discrete time step at which no logging was per-7

formed? Consider Fig. 1a, a system for which a logging occurs at every8

discrete time step. When logging occurs at only some time steps (due to9

some sensor faults, or to save energy with only a sparse, scattered logging),10

a possible output is in Fig. 1b. In such a setting, how to be certain that,11

in between two discrete samples, another discrete sample (not recorded) did12

not violate the specification? That is, in Fig. 1b, there is no way to formally13

guarantee that the unsafe zone (i.e., above the red, dashed line) was never14

reached by another discrete sample which was not recorded. In many prac-15

tical cases, a piecewise-constant or linear approximation (see, e.g., Figs. 1c16

and 1d, where the large blue dots denote actual samples, while the small17

green dots denote reconstructed samples using some extrapolation) is arbi-18

trary and not appropriate—it can yield a “safe” answer, while the actual19

system could have actually been unsafe at some of the missing time steps.20

On the contrary, assuming a completely arbitrary dynamics will always yield21

“potentially unsafe”—thus removing the interest of monitoring. Without any22

knowledge of the model, one can always assume that the behavior given in23

Fig. 1e could happen. This behavior shows that the variable x is suddenly24

crossing the unsafe region (dashed) at some unlogged discrete time step—25

even though this is unlikely if the dynamics is known to vary “not very fast”.26

To alleviate such issues, we proposed in [9] an offline monitoring algorithm us-27

ing a bounding model, i.e., a rough overapproximation of the system behavior28

(originally introduced in [10] in a different context). The proposed method29

is based on the reachable set computation of uncertain linear systems [11]30

that can detect safety violations with limited false alarms.31

We also considered in [9] an online monitoring algorithm, aiming at en-32

ergetic efficiency, by recording samples only when required (i.e., when the33

system may get closer to a violation). MoULDyS implements both our offline34

and online monitoring algorithms [9]. We also provide here the steps to easily35

recreate the results of the two case studies in [9].36

Experimental setting. Given an aperiodic (i.e., missing valuations at various37

time steps) and a noisy log (i.e., the valuations that are present in the log38

can have an added noise—an overapproximation of the actual state), MoULDyS39

can perform offline monitoring of the system to detect safety of the system40

3



behavior. Further, MoULDyS can be used in an online setting to log only when1

necessary—thus targeting energy efficiency while logging. MoULDyS can be2

run on a standard laptop with a Linux operating system (see the installation3

guide for details [2]). The details of how to use the tool, with illustrative4

examples, can be found in the user guide [3].5

Outline. Section 2 describes the software; Section 3 describes the architec-6

ture; Section 4 describes the functionalities; Section 5 describes two illustra-7

tive examples from medical and automotive domains, with necessary steps8

to recreate their results; Section 6 discusses the impact of MoULDyS; Sec-9

tion 7 briefly reviews related works; Section 8 concludes and discusses future10

research.11

2. Software Description12

MoULDyS is an open-source software, implemented in Python, running13

on Linux platforms. Our experiments [9] suggest that MoULDyS is able to14

perform monitoring of reasonably large systems in a reasonable time. For15

example, we are able to monitor a five-dimensional system (i.e., a system16

with 5 continuous variables monitored at the same time) for 2000 time steps,17

with only actual 300 samples (note that, the fewer samples, the higher is18

the monitor computation time—as it is required to “recreate” the missing19

samples using reachable sets) in under 2.5 minutes on a standard laptop.20

We believe that MoULDyS will not just be helpful to engineers to analyze21

logs to detect safety violations in several areas of research (such as in robotics22

to detect collision and other undesirable behaviors), but also to researchers23

to further develop monitoring-based approaches—in that case MoULDyS can24

be used for comparison.25

3. Software Architecture26

The architecture of MoULDyS is given in Fig. 2. Each block in Fig. 2 rep-27

resents a core part (either functional or input) of the tool, and the arrows28

indicate the flow of data. The dataflow of MoULDyS, for both Figs. 3 and 429

(offline and online monitoring respectively), starts from the blocks in the left30

(e.g., bounding model, unsafe set, etc.) and ends at the extreme right of the31

figures (outputting the safety status, visualization, and/or synthesized log).32

Since both the offline (Block 1 of Figs. 2 and 3) and online monitoring algo-33

rithm (Block 2 in Figs. 2 and 4) uses reachability of uncertain linear systems34

(Block 3 of Fig. 2), a data exchange occurs between Block 1 and Block 3,35

as well as Block 2 and Block 3. MoULDyS implements a built-in reachability36

4



Bounding System 
Model
Type: Uncertain Linear 
System.
Representation: Numpy
array and Python 

dictionary.

Log
Type: Noisy, aperiodic 
valuations of the state 
variables.
Representation: File 
(.mlog)

Unsafe Set
Type: Constraints on 
state variables.
Representation:
Python list.

System Behavior
Type: Valuations of the 
state variables, at all 
time steps.
Representation: File 
(.mbeh).

Comment: A simulation 
of the system behavior

Block 1.A

Random Log 
Generator

Block 3

Offline 
Monitoring

Online 
Monitoring

Block 1

Block 2

Reachable Set 
Computation

Safety Status, with 
visualization.

Log (.mlog file)

Safety Status, with 
visualization.

Block 1.B

Figure 2: MoULDyS Architecture. Each block identifies a core part of the tool, and the
arrows indicate the flow of data.

Bounding System Model
• Type: Uncertain Linear System.
• Representation: Numpy

array and Python 

dictionary.

Safety Status, with 
visualization.

Offline Monitoring

Log
• Type: Noisy, aperiodic 

valuations of the state 
variables.

• Representation: File (with 
extension .mlog)

Unsafe Set
• Type: Constraints on state 

variables.
• Representation: Python 

list.

Figure 3: Dataflow diagram of the offline monitoring functionality of MoULDyS.

algorithm. The native reachable set computation support facilitates faster1

computing (i.e., no data exchange with third party tool is required, which2

would potentially require additional data reformatting) with no additional3

tool installation required. MoULDyS employs an algorithm proposed in [11] to4

5



Bounding System Model
• Type: Uncertain Linear System.
• Representation: Numpy

array and Python 

dictionary

Online Monitoring

System Behavior
• Type: Valuations of the state 

variables, at all time steps.
• Representation: File (with 

extension .mbeh).

• Comment: A simulation of the 
system behavior

Unsafe Set
• Type: Constraints on state 

variables .
• Representation: Python 

list.

Safety Status, with 
visualization.

Log (.mlog file)

Figure 4: Dataflow diagram of the online monitoring functionality of MoULDyS.

compute the reachable set of uncertain linear systems. The algorithm first1

computes the reachable set of the nominal dynamics (which excludes uncer-2

tainties) and then computes the reachable set related to the uncertainties3

in the dynamics. These two sets are then combined using the Minkowski4

sum to obtain the reachable set of the entire dynamics. Although computing5

the reachable set of the nominal dynamics is straightforward, the reachable6

set related to uncertainties is challenging to compute. After obtaining the7

reachable sets, MoULDyS verifies the safety of these sets by comparing them8

against provided safety specifications. These safety specifications are con-9

straints on state variables, which can be complex and involve multiple state10

variables (e.g., linear inequalities involving several state variables). To rep-11

resent such safety specifications, MoULDyS uses a special type of polytope12

called zonotopes, which can be expressed as an affine transformation of a13

unit box. MoULDyS can check multiple safety specifications, each represented14

as a zonotope and involving several state variables.15

3.1. Implementation16

MoULDyS is implemented using Python 3.7.x, and runs in a Linux envi-17

ronment. The architecture is given in Fig. 2.18

The tool can be used in the following two ways. On the one hand, users19

6



can use it through the provided virtual machine2, which already contains all1

the necessary dependencies and has the path variable set. Nevertheless, users2

are still required to obtain and install the Gurobi license themselves, since3

Gurobi only grants free academic licenses to individuals. On the other hand,4

the tool can also be downloaded and setup from its public GitHub repository3.5

If users aim to recreate the results in the paper or simply employ it for basic6

monitoring purposes, using the provided virtual machine is recommended.7

However, if the tool will be used for research and development purposes, it8

is recommended to download and set it up on a local machine. The detailed9

installation instructions are provided in [2]. The system model (represented10

as an uncertain linear system), in MoULDyS, is represented with a numpy11

array and a dictionary. The unsafe set is represented with a Python list. An12

example code of how to encode the system model and its unsafe specification13

can be found in the public repository4. The log and the system behavior,14

on the other hand, is given as a file to MoULDyS (MoULDyS can also generate15

random logs; discussed later). Logs can either be represented as zonotopes16

or intervals (an example of the required file can be found in MoULDyS public17

repository5).18

Both the online and offline monitoring algorithm (Block 1 and Block 219

of Fig. 2) have been implemented in Python using standard libraries, namely20

numpy, scipy and mpmath. The reachable set computation (Block 3 of21

Fig. 2) module implements the algorithm proposed in [11] in Python. Both22

the online and the offline module require performing intersection checking of23

zonotopes [9], which has been implemented as an optimization formulation24

using Gurobi. Gurobi has been further used to visualize the reachable sets.25

Installation. While the virtual machine comes preinstalled with the required26

dependencies, setting up MoULDyS on a local machine requires installing the27

following dependencies: numpy, scipy, mpmath, pandas, Gurobi along with28

gurobipy (Gurobi requires an ad-hoc install but is free to use for academic29

purposes). The detailed steps for installing MoULDyS are given in the instal-30

lation guide [2].31

User Guide. A tutorial on how to use several functionalities of MoULDyS,32

along with sample codes (encoding a toy dynamics), is given in the user33

210.5281/zenodo.7888502
3https://github.com/bineet-coderep/MoULDyS/releases/tag/v1.1
4https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/

TutorialOfflineMonitoring.py
5https://www.github.com/bineet-coderep/MoULDyS/blob/main/data/toyEg_5_

interval.mlog

7

https://www.doi.org/10.5281/zenodo.7888502
https://github.com/bineet-coderep/MoULDyS/releases/tag/v1.1
https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/TutorialOfflineMonitoring.py
https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/TutorialOfflineMonitoring.py
https://www.github.com/bineet-coderep/MoULDyS/blob/main/data/toyEg_5_interval.mlog
https://www.github.com/bineet-coderep/MoULDyS/blob/main/data/toyEg_5_interval.mlog


guide [3].1

4. Software Functionalities2

In this section, we discuss the core functionalities of MoULDyS:3

Offline Monitoring The offline monitoring requires the bounding model of4

the system (represented as an uncertain linear system) to be given as5

input. Further, a log of the system behavior is required, which can be6

achieved by the following ways: i) If the user already has a log to be7

monitored, it can be simply passed as an input to Block 1 of Fig. 2.8

ii) Alternatively, MoULDyS can also generate a random (noisy and ape-9

riodic) log of the system, from a given initial set, using Block 1.A. The10

selection between the two possible choices is facilitated by Block 1.B.11

Analyzing the log, the final output of the offline monitoring is either12

safe (indicating the system behavior is certainly safe at all time steps),13

or possibly-unsafe (indicating the system might have shown unsafe14

behavior). An example code snippet to perform offline monitoring, on15

a toy example, can be found in its public repository.616

Online Monitoring The online monitoring requires the bounding model of17

the system (represented as an uncertain linear system) to be given as18

input, as well as the actual behavior of the system. The actual behav-19

ior of the system is given as a file (with extension .mbeh) representing20

the values of the state variables at every time step—an example of21

the expected file (with extension .mbeh), containing valuation of the22

state variables at every time step, can be found in its public reposi-23

tory.7 The final output of this feature is the safety status of the system24

(safe/possibly-unsafe), and a synthesized log. An example code25

snippet to perform online monitoring, on a toy example, can be found26

in its public repository.827

As a side functionality, MoULDyS also allows to generate random logs28

(using Block 1.A). While this is not strictly speaking part of monitoring,29

it greatly helps to perform experiments using MoULDyS. Basically, given a30

6https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/

TutorialOfflineMonitoring.py
7https://www.github.com/bineet-coderep/MoULDyS/blob/main/data/toyEg_5_

interval.mbeh
8https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/

TutorialOnlineMonitoring.py

8

https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/TutorialOfflineMonitoring.py
https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/TutorialOfflineMonitoring.py
https://www.github.com/bineet-coderep/MoULDyS/blob/main/data/toyEg_5_interval.mbeh
https://www.github.com/bineet-coderep/MoULDyS/blob/main/data/toyEg_5_interval.mbeh
https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/TutorialOnlineMonitoring.py
https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/TutorialOnlineMonitoring.py


bounding model, MoULDyS can generate a random log following the bounding1

model.2

5. Illustrative examples3

In this section, we briefly recall the two case studies presented in [9]4

that use a prototype version of MoULDyS. The two case studies, automated5

anesthesia delivery and adaptive cruise control, demonstrate the applicability6

and usability of MoULDyS. Further, we provide detailed steps to recreate the7

results presented in [9] using MoULDyS.8

Anesthesia [12] presents an automated anaesthesia delivery model, with9

the drug propofol. The system models the metabolization of the drug10

by the body, and the depth of hypnosis. The state variables encode11

the various concentration levels—that must be within a certain limit12

at all times—modeling the metabolization of the drug and the depth of13

hypnosis. Note that a higher concentration level would mean that the14

patient remains unconscious for a longer period of time, while a lower15

concentration level would mean that patient remains conscious during16

the surgery—which can be traumatic. MoULDyS can help performing an17

automated monitoring of the patients without compromising on safety.18

Adaptive Cruise Control (ACC) [13] presents a model of ACC with19

state variables as velocity, distance between two vehicles, and the ve-20

locity of the lead vehicle. Offline monitoring provides an automated21

way to detect the cause of the crash and who was at fault. Similarly,22

consider a vehicle driving on a highway with a vehicle in its sight. The23

ACC unit will have to continuously read sensor values to track sev-24

eral parameters, such as acceleration of the lead vehicle, braking force,25

etc.—causing a waste of energy. In these cases, deploying online mon-26

itoring on the vehicle ACC will ensure that the sensor values are only27

read when there is a potential unsafe behavior—thus saving energy.28

[9] provides several such practical cases where monitoring is useful—in29

[9, Figs. 5 and 6] (also recalled in the appendix in Figs. B.8 and B.930

respectively).31

The case studies mentioned above study the following aspects with re-32

gards to monitoring: i) Impact of number of samples in the log. ii) Impact33

of uncertainties in the samples of the log. iii) Demonstrating online moni-34

toring. iv) Comparing offline and online monitoring. In the following, we35

provide the detailed steps to recreate the results in [9, Section 5]. In par-36

ticular, the results that we wish to recreate, from [9], are given in Figs. B.637

to B.9.38

9



5.1. Recreating Results1

The results of the Anesthesia case study and the ACC case study can2

be recreated by using the scripts provided in the GitHub repository9. The3

detailed steps to recreate the results from both the case studies are given4

in [14].5

Note that, in [9, Section 5], logs were randomly generated during our6

experiments, and therefore the results from [9, Section 5] cannot be stricto7

sensu be recreated, as their reproducibility script re-generates a random log,8

which may differ from the one actually shown in [9, Section 5].9

Therefore, we modified our scripts so that the log is given as an input,10

on which monitoring is performed: we thus generated the logs statically, and11

embedded them in the reproducibility capsule, in order for users to reproduce12

exactly the result we present here. These logs were generated with the same13

logging probabilities (and initial sets) as in [9, Section 5]. In the rest of the14

section, we discuss the steps for replicating the new Figs. B.6 to B.9.15

Anesthesia. The main results of the Anesthesia case study are pro-16

vided in Figs. B.6 and B.7 (variant of [9, Figures 3 and 4]). We17

use python Anesthesia.py -offline i, with i ∈ {1, 2, 3, 4} to recre-18

ate Figs. B.6a to B.6d respectively. To recreate Fig. B.7a, we19

use python Anesthesia.py -online. To recreate Fig. B.7b, we use20

python Anesthesia.py -compare. The Anesthesia.py script is provided21

in its GitHub repository.1022

ACC. The main results of the ACC case study are provided in Figs. B.823

and B.9 (variant of [9, Figures 5 and 6]). The results of the ACC case study24

can be recreated in a similar manner to the Anesthesia case study, by simply25

using the ACC.py11 script instead of the Anesthesia.py script.26

6. Impact27

While MoULDyS remains a prototype based on a recent algorithm [9], and28

is by no means a widely used software in an industrial context for the time be-29

ing, we believe it has an interesting potential to gain up a user base interested30

in monitoring black-box cyber-physical systems against safety properties. To31

the best of our knowledge, it is the first software allowing monitoring logs32

9https://www.github.com/bineet-coderep/MoULDyS/tree/main/src/recreate_results_from_paper
10https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/recreate_results_from_

paper/Anesthesia.py
11https://github.com/bineet-coderep/MoULDyS/blob/main/src/recreate_results_from_paper/

ACC.py

10

https://www.github.com/bineet-coderep/MoULDyS/tree/main/src/recreate_results_from_paper
https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/recreate_results_from_paper/Anesthesia.py
https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/recreate_results_from_paper/Anesthesia.py
https://github.com/bineet-coderep/MoULDyS/blob/main/src/recreate_results_from_paper/ACC.py
https://github.com/bineet-coderep/MoULDyS/blob/main/src/recreate_results_from_paper/ACC.py


featuring not only uncertainty (due to sensor’s imperfect behavior) but also1

potentially missing samples, together with a bounding model going beyond2

the class of linear systems. This is in contrast with, e.g., [10] in which our3

bounding model was restricted to linear models.4

In addition, MoULDyS can perform online monitoring, with a focus on5

energetic efficiency: by triggering a sample recording only when necessary6

(i.e., when MoULDyS informs the system that it may get close to an unsafe7

behavior according to its online algorithm), the system saves energy, i.e., only8

records samples (which needs network bandwidth usage, as well as processor9

and memory usage) when necessary instead of at every time unit.10

Our applications recalled in Section 5 show that MoULDyS can be applied11

to challenging domains such as health and autonomous driving, giving inter-12

esting results (e.g., limited number of false alarms) in a reasonable execution13

time making it suitable to real-time applications.14

7. Related works15

Monitoring complex systems, and notably cyber-physical systems, drew16

a lot of attention in the last decades [4]. We briefly review close works in the17

following.18

MonPoly [15] is a monitoring tool taking as specification formulas ex-19

pressed using MFOTL (metric first-order temporal logic). It is entirely20

black-box: the only input beyond the formula is the log, i.e., a sequence of21

timestamped system events, potentially with numeric arguments (e.g., “@1022

withdraw (Alice,6000)”, expressing that a withdrawal occurs at times-23

tamp 10).24

In [16], the focus is on online monitoring over real-valued signals, using25

MTL as the specification formalism. Again, the system is black-box.26

In [17], parametric timed pattern matching is made, on an entirely black-27

box system, i.e., without any prior knowledge of the system; the tools used28

are IMITATOR [18] and a prototypal tool ParamMONAA. The output is a set29

of intervals where a property is valid/violated, possibly with a set of timing30

parameter valuations.31

In [10], we proposed model-bounded monitoring : instead of monitoring a32

black-box system against a sole specification, we use in addition a (limited,33

over-approximated) knowledge of the system, to eliminate false positives.34

This over-approximated knowledge is given in [10] in the form of a linear hy-35

brid automaton (LHA) [19]. We use in [10] both an ad-hoc implementation,36

and another one based on PHAVerLite [20]. In this work, we share with [10]37

the principle of using an over-approximation of the model to rule out some38

11



violation of the specification, which comes in contrast with the aforemen-1

tioned works. However, we consider here a different formalism, and we work2

on discrete samples. In terms of expressiveness of the over-approximated3

model, while our approach can be seen as less expressive than [10], in the4

sense that we have a single (uncertain) dynamics (as opposed to LHAs, where5

a different dynamics can be defined in each mode), our dynamics is also sig-6

nificantly more expressive than the LHA dynamics of [10]; we consider not7

only the class of linear dynamical systems, but even fit into a special case of8

non-linear systems, by allowing uncertainty in the model dynamics.9

In [21, 22], a monitor is constructed from a system model in differential10

dynamic logic [23]. The main difference between [21, 22] and our approach11

relies in the system model: in [21, 22], the compliance between the model12

and the behavior is checked at runtime, while our model is assumed to be an13

over-approximation of the behavior—which is by assumption compliant with14

the model.15

8. Conclusion and Future Work16

Monitoring black-box complex cyber-physical systems can be delicate,17

and may lead to false alarms. MoULDyS is a Python-based tool implementing18

offline and online monitoring algorithms. A first crux of MoULDyS is to be able19

to manage logs with uncertainty over the logged state variables, as well as20

missing samples. A second crux is the use of a bounding model in the form21

of uncertain linear systems, helping to reduce the number of false alarms.22

MoULDyS can analyze logs efficiently to detect possible safety violations that23

might have caused an unsafe behavior. Further, MoULDyS can also be used24

in an online setting where the system is sampled only when there is a risk25

of safety violation. As a result, the online monitoring is able to decrease26

the number of samples, therefore reducing energy consumption at runtime.27

MoULDyS is available under the GNU General Public License.28

In future, we wish to extend MoULDyS to support uncertainty not only29

in the log valuations (the value of a sensor at a given timestamp), but also30

uncertainty in the log timestamps themselves: this makes sense when some31

sensors are distributed with drifting clocks, or when network delays make the32

exact recording timestamp imprecise.33

Acknowledgements (optional)34

Bineet Ghosh was supported by the National Science Foundation (NSF)35

of the United States of America under grant number 2038960. This work is36

partially supported by the ANR-NRF French-Singaporean research program37

12



ProMiS (ANR-19-CE25-0015 / 2019 ANR NRF 0092) and by ANR BisoUS1

(ANR-22-CE48-0012).2

References3

[1] GNU General Public License v3.0, https://www.gnu.org/licenses/4

gpl-3.0.en.html.5

[2] MoULDyS installation guide, https://www.github.com/6

bineet-coderep/MoULDyS/blob/main/documentation/7

installation_guide.md (2022).8

[3] MoULDyS user guide, https://www.github.com/bineet-coderep/9

MoULDyS/blob/main/documentation/user_guide.pdf (2022).10

[4] E. Bartocci, J. V. Deshmukh, A. Donzé, G. E. Fainekos, O. Maler,11

D. Ničković, S. Sankaranarayanan, Specification-based monitoring of12

cyber-physical systems: A survey on theory, tools and applications,13

in: E. Bartocci, Y. Falcone (Eds.), Lectures on Runtime Verification14

– Introductory and Advanced Topics, Vol. 10457 of Lecture Notes15

in Computer Science, Springer, 2018, pp. 135–175. doi:10.1007/16

978-3-319-75632-5_5.17

[5] D. A. Basin, G. Caronni, S. Ereth, M. Harvan, F. Klaedtke, H. Man-18

tel, Scalable offline monitoring of temporal specifications, Formal19

Methods in System Design 49 (1-2) (2016) 75–108. doi:10.1007/20

s10703-016-0242-y.21

[6] O. Maler, Some thoughts on runtime verification, in: Y. Falcone,22

C. Sánchez (Eds.), RV, Vol. 10012 of Lecture Notes in Computer Science,23

Springer, 2016, pp. 3–14. doi:10.1007/978-3-319-46982-9_1.24

[7] R. Lal, P. Prabhakar, Bounded error flowpipe computation of parame-25

terized linear systems, in: A. Girault, N. Guan (Eds.), EMSOFT, IEEE,26

2015, pp. 237–246. doi:10.1109/EMSOFT.2015.7318279.27

[8] B. Ghosh, P. S. Duggirala, Robust reachable set: Accounting for uncer-28

tainties in linear dynamical systems, ACM Transactions on Embedded29

Computing Systems 18 (5s) (2019) 97:1–97:22. doi:10.1145/3358229.30

[9] B. Ghosh, É. André, Monitoring of scattered uncertain logs using un-31

certain linear dynamical systems, in: M. Mousavi, A. Philippou (Eds.),32

FORTE, Vol. 13273 of Lecture Notes in Computer Science, Springer,33

2022, pp. 67–87. doi:10.1007/978-3-031-08679-3_5.34

13

https://www.loria.science/ProMiS/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/installation_guide.md
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/installation_guide.md
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/installation_guide.md
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/installation_guide.md
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/installation_guide.md
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/user_guide.pdf
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/user_guide.pdf
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/user_guide.pdf
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/s10703-016-0242-y
https://doi.org/10.1007/s10703-016-0242-y
https://doi.org/10.1007/s10703-016-0242-y
https://doi.org/10.1007/978-3-319-46982-9_1
https://doi.org/10.1109/EMSOFT.2015.7318279
https://doi.org/10.1145/3358229
https://doi.org/10.1007/978-3-031-08679-3_5


[10] M. Waga, É. André, I. Hasuo, Model-bounded monitoring of hybrid1

systems, ACM Transactions on Cyber-Physical Systems 6 (4) (2022)2

30:1–30:26. doi:10.1145/3529095.3

[11] B. Ghosh, P. S. Duggirala, Robustness of safety for linear dynamical4

systems: Symbolic and numerical approaches, Tech. Rep. 2109.07632,5

arXiv (2021).6

[12] V. Gan, G. A. Dumont, I. Mitchell, Benchmark problem: A PK/PD7

model and safety constraints for anesthesia delivery, in: G. Frehse,8

M. Althoff (Eds.), ARCH@CPSWeek, Vol. 34 of EPiC Series in Com-9

puting, EasyChair, 2014, pp. 1–8. doi:10.29007/8drm.10

[13] P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A. D. Ames, J. W. Grizzle,11

N. Ozay, H. Peng, P. Tabuada, Correct-by-construction adaptive cruise12

control: Two approaches, IEEE Transactions on Control Systems Tech-13

nology 24 (4) (2016) 1294–1307. doi:10.1109/TCST.2015.2501351.14

[14] MoULDyS: Recreating results, https://www.github.com/15

bineet-coderep/MoULDyS/blob/main/documentation/recreate_16

results.md (2022).17

[15] D. A. Basin, F. Klaedtke, E. Zalinescu, The MonPoly monitoring tool,18

in: G. Reger, K. Havelund (Eds.), RV-CuBES, Vol. 3 of Kalpa Publica-19

tions in Computing, EasyChair, 2017, pp. 19–28.20

[16] K. Mamouras, A. Chattopadhyay, Z. Wang, A compositional frame-21

work for quantitative online monitoring over continuous-time signals,22

in: L. Feng, D. Fisman (Eds.), RV, Vol. 12974 of Lecture Notes23

in Computer Science, Springer, 2021, pp. 142–163. doi:10.1007/24

978-3-030-88494-9_8.25

[17] M. Waga, É. André, I. Hasuo, Parametric timed pattern matching, ACM26

Transactions on Software Engineering and Methodology 32 (1) (2022)27

10:1–10:35. doi:10.1145/3517194.28

[18] É. André, IMITATOR 3: Synthesis of timing parameters beyond de-29

cidability, in: R. Leino, A. Silva (Eds.), CAV, Vol. 12759 of Lecture30

Notes in Computer Science, Springer, 2021, pp. 1–14. doi:10.1007/31

978-3-030-81685-8_26.32

[19] N. Halbwachs, Y.-É. Proy, P. Raymond, Verification of linear hybrid33

systems by means of convex approximations, in: B. Le Charlier (Ed.),34

14

https://doi.org/10.1145/3529095
https://doi.org/10.29007/8drm
https://doi.org/10.1109/TCST.2015.2501351
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/recreate_results.md
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/recreate_results.md
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/recreate_results.md
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/recreate_results.md
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/recreate_results.md
https://doi.org/10.1007/978-3-030-88494-9_8
https://doi.org/10.1007/978-3-030-88494-9_8
https://doi.org/10.1007/978-3-030-88494-9_8
https://doi.org/10.1145/3517194
https://doi.org/10.1007/978-3-030-81685-8_26
https://doi.org/10.1007/978-3-030-81685-8_26
https://doi.org/10.1007/978-3-030-81685-8_26


Monitoring of Autonomous Systems

Figure A.5: MoULDyS Logo.

SAS, Vol. 864 of Lecture Notes in Computer Science, Springer, 1994,1

pp. 223–237. doi:10.1007/3-540-58485-4_43.2

[20] A. Becchi, E. Zaffanella, Revisiting polyhedral analysis for hybrid3

systems, in: B. E. Chang (Ed.), SAS, Vol. 11822 of Lecture Notes4

in Computer Science, Springer, 2019, pp. 183–202. doi:10.1007/5

978-3-030-32304-2_10.6

[21] S. Mitsch, A. Platzer, ModelPlex: verified runtime validation of verified7

cyber-physical system models, Formal Methods in System Design 49 (1-8

2) (2016) 33–74. doi:10.1007/s10703-016-0241-z.9

[22] S. Mitsch, A. Platzer, Verified runtime validation for partially observable10

hybrid systems, Tech. rep. (2018). arXiv:1811.06502.11

URL http://arxiv.org/abs/1811.0650212

[23] A. Platzer, The complete proof theory of hybrid systems, in: LICS, IEEE13

Computer Society, 2012, pp. 541–550. doi:10.1109/LICS.2012.64.14

Appendix A. MoULDyS: A Monitoring Tool for Autonomous Systems15

The various details of MoULDyS are given as follows:16

Logo The tool logo is given in Fig. A.5.17

Webpage The tool webpage can be found here: https://www.sites.18

google.com/view/mouldys.19

15

https://doi.org/10.1007/3-540-58485-4_43
https://doi.org/10.1007/978-3-030-32304-2_10
https://doi.org/10.1007/978-3-030-32304-2_10
https://doi.org/10.1007/978-3-030-32304-2_10
https://doi.org/10.1007/s10703-016-0241-z
http://arxiv.org/abs/1811.06502
http://arxiv.org/abs/1811.06502
http://arxiv.org/abs/1811.06502
http://arxiv.org/abs/1811.06502
http://arxiv.org/abs/1811.06502
https://doi.org/10.1109/LICS.2012.64
https://www.sites.google.com/view/mouldys
https://www.sites.google.com/view/mouldys
https://www.sites.google.com/view/mouldys


Code MoULDyS is an open-source tool under the gpl-3.0 license. The1

code can be found in a public GitHub repository: https://github.com/2

bineet-coderep/MoULDyS/releases/tag/v1.1.3

Installation Guide The installation guide is available in [2].4

User Guide The user guide is available in [3].5

Result Recreation Guide Guide A prototype version of MoULDyS was6

used to perform the experiments in [9]. The detailed steps to recre-7

ate the results in [9], through easy-to-use scripts, are available in [14].8

Appendix B. Recreating Experimental Results9

The results to be recreated for the Anesthesia case study are given in10

Figs. B.6 and B.7. The results to be recreated for the ACC case study are11

given in Figs. B.8 and B.9.12

16

https://github.com/bineet-coderep/MoULDyS/releases/tag/v1.1
https://github.com/bineet-coderep/MoULDyS/releases/tag/v1.1
https://github.com/bineet-coderep/MoULDyS/releases/tag/v1.1


0 250 500 750 1000 1250 1500 1750 2000
Time

1

2

3

4

5

6

St
at

e 
0

(a) Monitoring with frequent samples, and low
uncertainty

0 250 500 750 1000 1250 1500 1750 2000
Time

1

2

3

4

5

6

St
at

e 
0

(b) Monitoring with frequent samples, and high
uncertainty

0 250 500 750 1000 1250 1500 1750 2000
Time

1

2

3

4

5

6

St
at

e 
0

(c) Monitoring with sporadic samples, and low
uncertainty

0 250 500 750 1000 1250 1500 1750 2000
Time

0

1

2

3

4

5

6

St
at

e 
0

(d) Monitoring with sporadic samples, and high
uncertainty

Figure B.6: Offline Monitoring (Anesthesia). We plot the change in concentration
level of cp with time. The volume of the samples increases from left to right, and the
probability of logging increases from bottom to top. The blue regions are the reachable
sets showing the over-approximate reachable sets as computed by the offline monitoring,
the black regions are the samples from the log given to the offline monitoring algorithm,
and the red dotted line represents safe distance level. Note that although Figure 1 and
Figure 4 (Figs. B.6b and B.6c) reachable sets’ seem to intersect with the red line (unsafe
set), the refinement module infers them to be unreachable, therefore concluding the system
behavior as safe—unlike Fig. B.6d. These plots are a stochastic recreation of [9, Figure
3].

17



0 250 500 750 1000 1250 1500 1750 2000
Time

1

2

3

4

5

6

St
at

e 
0

(a) Online Monitoring

0 250 500 750 1000 1250 1500 1750 2000
Time

0

1

2

3

4

5

6

St
at

e 
0

(b) Compare Online and Offline Monitor-
ing

Figure B.7: Online Monitoring (Anesthesia). We plot the change in concentration
level of cp with time. The blue regions are the reachable sets showing the over-approximate
reachable sets as computed by the online monitoring, the black regions are the samples
generated when the logging system was triggered by the online monitoring algorithm, and
the red dotted line represents safe concentration levels. Online Monitoring (Fig. B.7a): We
apply our online monitoring to the anesthesia model. Compare (Fig. B.7b): We compare
our online and offline algorithms. The green regions are the reachable sets showing the
over-approximate reachable sets between two consecutive samples from the offline logs, the
magenta regions are the offline logs, given as an input to the offline monitoring algorithm,
generated by the logging system, and the red dotted line represents safe concentration
levels. The blue regions are the reachable sets showing the over-approximate reachable
sets as computed by the online monitoring, the black regions are the samples generated
when the logging system was triggered by the online monitoring algorithm, and the red
dotted line represents safe concentration levels. These plots are a stochastic recreation
of [9, Figure 4].

18



0 250 500 750 1000 1250 1500 1750 2000
Time

0

50

100

150

200

St
at

e 
1

(a) Monitoring with frequent samples, and low
uncertainty

0 250 500 750 1000 1250 1500 1750 2000
Time

0

50

100

150

200

St
at

e 
1

(b) Monitoring with frequent samples, and high
uncertainty

0 250 500 750 1000 1250 1500 1750 2000
Time

0

50

100

150

200

St
at

e 
1

(c) Monitoring with sporadic samples, and low
uncertainty

0 250 500 750 1000 1250 1500 1750 2000
Time

0

50

100

150

200

St
at

e 
1

(d) Monitoring with sporadic samples, and high
uncertainty

Figure B.8: Offline Monitoring (ACC). We plot the change in distance h between
the vehicles with time. The volume of the samples increases from left to right, and the
probability of logging increases from bottom to top. These plots are a stochastic recreation
of [9, Figure 5]

19



0 250 500 750 1000 1250 1500 1750 2000
Time

0

50

100

150

200

250

300

350

400

St
at

e 
1

(a) Online Monitoring

0 250 500 750 1000 1250 1500 1750 2000
Time

0

100

200

300

400
St

at
e 

1

(b) Compare Online and Offline Monitor-
ing

Figure B.9: Online Monitoring (ACC). We plot the change in distance between two
vehicle h with time. The color coding is same as Fig. B.7. Online Monitoring (Fig. B.9a):
We apply our online monitoring to the ACC model. Compare (Fig. B.9b): We compare
our online and offline algorithms. These plots are a stochastic recreation of [9, Figure 6]

20


	Motivation and Significance
	Software Description
	Software Architecture
	Implementation

	Software Functionalities
	Illustrative examples
	Recreating Results

	Impact
	Related works
	Conclusion and Future Work
	MoULDyS: A Monitoring Tool for Autonomous Systems
	Recreating Experimental Results

