
Interpretable Trade-offs Between Robot Task Accuracy and Compute
Efficiency

Bineet Ghosh1, Sandeep Chinchali2, Parasara Sridhar Duggirala1

Abstract— A robot can invoke heterogeneous computation
resources such as CPUs, cloud GPU servers, or even human
computation for achieving a high-level goal. The problem of
invoking an appropriate computation model so that it will
successfully complete a task while keeping its compute and
energy costs within a budget is called a model selection problem.
In this paper, we present an optimal solution to the model
selection problem with two compute models, the first being fast
but less accurate, and the second being slow but more accurate.
The main insight behind our solution is that a robot should
invoke the slower compute model only when the benefits from
the gain in accuracy outweigh the computational costs. We show
that such cost-benefit analysis can be performed by leveraging
the statistical correlation between the accuracy of fast and slow
compute models. We demonstrate the broad applicability of our
approach to diverse problems such as perception using neural
networks and safe navigation of a simulated Mars rover.

I. INTRODUCTION

Ideally, robotic computation should be highly accurate,
responsive, and fast, as well as compute-and-power-efficient.
Modern robots, however, face the challenge of selecting from
an array of heterogeneous compute resources, each with a
unique trade-off between accuracy and compute cost. For
example, should a factory robot trust the perception results
from an on-board deep neural network (DNN) or ask a busy
human supervisor for help? Likewise, should a small drone
compute its motion plan locally, or wait for a higher-fidelity
plan from a remote server? At their core, these scenarios are
instances of a compute model selection problem, where a robot
must gracefully balance task-relevant accuracy with compute
time, power, or network and human-processing delay.

Figure 1 illustrates the model selection problem addressed
in this paper. Given the sensor observations x at each time
step, a robot’s model selection policy π must dynamically
invoke either a fast, compute-and-power-efficient model
(ffast) or a slower, more accurate model (fslow) based
on a high-level task’s required accuracy. Variants of this
problem have been studied for perception tasks in cloud
robotics [1], [2] and human-robot collaboration [3], [4],
[5]. However, existing works either offer specialized point-
solutions (e.g. for perception [6], [7]) that do not readily
generalize to other domains, use hand-engineered heuristics,
or employ uninterpretable, learning-based algorithms [1], [8].
Our key contribution is to provide a unified, interpretable,

1Bineet Ghosh and Parasara Sridhar Duggirala are with the Department
of Computer Science, The University of North Carolina at Chapel Hill, USA
{bineet,psd}@cs.unc.edu

2Sandeep Chinchali is with the Department of Electrical and
Computer Engineering, The University of Texas at Austin, USA
sandeepc@utexas.edu

Input
!

Robot

"#$%&

'(#$%&
)

*

"%+,-

"%+,-

'(%+,-
Model

Accuracy
Correlation

.(Δ1#$%&2%+,-) "%+,-

Fig. 1: The Compute Model Selection Problem: A robot must balance
task accuracy and compute cost, such as energy or latency, when choosing
between heterogeneous compute resources. Our interpretable model selection
policy π leverages the statistical correlation between fast and slow compute
models ffast and fslow to dynamically decide which model to invoke.

and theoretically-grounded framework for compute model
selection in robotics.

The fundamental principle behind selecting an appropriate
compute model is to perform a cost-benefit analysis. Our key
insight is that a robot’s model selection algorithm can leverage
the statistical, and often analytical, correlation between the
accuracy of the fast and the slow compute models. This
correlation can enable us to perform reliable and interpretable
cost-benefit analysis between compute cost and gain in
accuracy for the different models. Crucially, such correlations
between fast and slow models are now possible even for state-
of-the-art DNNs, due to recent advances that compress large
DNNs with provable approximation guarantees [9], [10].

Literature Review: Our work is broadly related to com-
putational offloading in cloud robotics as well as teacher
feedback for human-robot interaction. The closest work to
ours is [1], which develops a deep reinforcement learning
(RL) policy to select between a fast, less accurate deep neural
network (DNN) or slower, more accurate DNN running
at a cloud computing server. Indeed, we explicitly build
upon [1] in our formulation by considering fast and slow
compute models with a hierarchy of compute costs. In
stark contrast to [1], however, we avoid uninterpretable, RL-
based model selection policies. Instead we leverage statistical
correlations between fast and slow computational models,
such as compression algorithms for DNNs [9], [10]. Further,
unlike [1], we introduce a theoretically-grounded cost-benefit
analysis for model selection, which generalizes beyond DNNs
to high-dimensional linear regression and even sampling-
based reachability problems, as shown in our evaluation.

Our work is also inspired by methods to compress large

ar
X

iv
:2

10
8.

01
23

5v
1

 [
cs

.R
O

]
 3

 A
ug

 2
02

1

DNNs for efficient inference on compute-and-power limited
robots. For example, the EfficientNet [11] suite of vision
models provides 7 model variants that trade-off accuracy
with model size and latency. Importantly, recent methods
utilize core-set theory to train fast, compressed DNNs that
provably approximate a slower DNN by pruning convolutional
filters based on sensitivity analyses [9], [10].

Finally, our work is related to scenarios where a robot must
selectively ask a human teacher for clarification during active
learning tasks [3], [4] or remote assistance for manipulation
[5]. In principle, our framework applies to such settings if a
robot can accurately correlate its confidence with the marginal
accuracy gain it receives from human feedback. In practice,
however, such correlations can often be learned from historical
interaction data but are hard to analytically quantify.

Contributions: Given prior literature, our contributions are
three-fold. First, we design an interpretable model selection
algorithm which leverages analytical correlations between fast
and slow model performance to dynamically decide which
model to invoke. Second, we show how our algorithm can
naturally leverage recent advances that compress large DNNs
with provable approximation guarantees that relate fast and
slow models. Third, we show strong experimental perfor-
mance of our algorithm on diverse domains ranging from
robotic perception to sampling-based reachability analysis for
a simulated rover navigating Martian terrain data.

Organization: This paper is organized as follows. In
Section II, we introduce a general formulation for model
selection to gracefully trade-off task accuracy and compute
costs. In Sec. III, we provide theoretical guarantees for model
selection and instantiate them for applications in perception
and reachability analysis in Sec. IV. Finally, we provide our
experimental results in Sec. V and conclude in Sec. VI.

II. PROBLEM STATEMENT

In this section, we formally define the problem of model
selection depicted in Fig. 1 by introducing compute models,
an accuracy metric, and a performance criterion.

Compute Model Input: The input to the compute model,
at time t, is denoted by xt ∈ Rn. We denote the input data
distribution by X , that is, xt ∼ X . In practice, xt could
represent a depth-camera image or laser scan.

Compute Models: The compute models are denoted by
fi : Rn → Rm, where i ∈ {fast, slow}. Given an input xt,
the output is denoted by yti = fi(x

t). The cost associated
with fi is given by ci ∈ R+. The cost is context-dependent,
such as battery consumption, compute inference latency, or
even communication latency for cloud robotics tasks. For
example, the compute models could be a DNN, with image
input xt and corresponding segmentation yt. The distribution
of outputs is denoted by Y , that is, yti ∼ Y . The ground-truth
output associated with input xt is denoted by ytoracle.

Loss Function: Let L(yt1, y
t
2) : Rm × Rm → R≥0 be the

loss function, that formally quantifies the quality of the output
yt1 returned by a compute model compared to the ground-truth
result of yt2. A lower value of L(·) indicates a more accurate

output. In practice, the loss function is context-dependent,
such as the cross-entropy loss for image classification.

Model Selection Policy: Given an input xt, the model
selection policy decides whether to use the slow compute
model fslow, or the fast model ffast. We assume that the
policy has access to the results of the fast model (without this
information, the policy would be purely random). Therefore,
the problem of model selection is to infer whether or not to
additionally invoke the slow model to enhance task accuracy
if the fast model results are insufficient for a robot’s high-level
goal. The challenge is that the robot only has access to the
input xt and the fast model output ytfast and thus must estimate
the accuracy benefit of the slow model before invoking it.

Formally, we define the model selection policy as π :
Rn×Rm → {0, 1}. Given input xt and fast model prediction
ytfast, we define the action as at = π(xt, ytfast). The action
at = 0 indicates selecting the fast model ffast, and at = 1
indicates selecting the slow model fslow. We define the cost
associated with each action as cost(at):

cost(at) =

{
cfast if at = 0

cfast + cslow if at = 1
.

Reward: To simultaneously achieve high task accuracy
while minimizing the cost of compute, we introduce a per-
timestep reward. Given input xt, the output of the fast model
ytfast, and model selection at, the corresponding reward is:

Rt(at) =

{
−αL(ytfast, y

t
oracle)− βcost(0) if at = 0

−αL(ytslow, y
t
oracle)− βcost(1) if at = 1

(1)
where α, β ∈ R+ are user-defined weights to balance the
emphasis on accuracy and cost. These can be flexibly set by
a roboticist given the unique requirements of a high-level
task. For example, a fleet of low-power, compute-limited
warehouse robots that rarely interact with humans might have
a higher emphasis β on cost to minimize how many times
they query a shared central server or remote human supervisor.
Conversely, robots that operate in safety-critical scenarios
will have a much higher emphasis on accuracy given by α.

A. Formal Problem Definition

Given a stream of N inputs, {x1, x2, · · · , xN}, our goal
is to propose an optimal model selection policy π∗, that
provably maximizes the expected cumulative reward:

E
N∑
t=0

Rt
(
π∗(xt, ytfast)

)
Intuitively, π∗ achieves the optimal balance between the cost
and accuracy over the given period of N time steps. We now
formally define the model selection problem.

Problem 1 (Model Selection for Inference): Given fast
model ffast, slow model fslow, loss function L(·), and model
selection cost cost(·), find the optimal model selection
policy π∗, which maximizes the reward (Equation 1) over a

finite horizon N :

π∗ = argmax
π

E
N∑
t=0

Rt
(
at = π(xt, ytfast)

)
.

Section III provides our solution to Problem 1.

B. Discussion on the Problem Definition

The model selection problem is broadly applicable in
robotics since it is agnostic to the nature of the compute
models, the loss function, or even costs. For example, the
models could represent small quantized and large, compute-
intensive DNNs or even small and large databases or random
forests. Further, the costs could represent battery consumption
or communication delay or model inference time.

The main challenge of this problem is the limited informa-
tion available to the selection policy, namely the input xt, fast
model output ytfast, and the cost function cost(·). The key
challenge is to estimate the accuracy of the slow model, fslow,
before even invoking it, which motivates our key technical
approach to statistically relate both models’ accuracy.

III. AN ALGORITHMIC APPROACH TO MODEL SELECTION

In this section, we provide an optimal solution to the model
selection problem (Problem 1). First, we make the following
practically-motivated assumption.

Assumption 1 (Action and State Independence): Given a
model input xt at any time t, the model selection at of
policy π does not affect the next robot measurement xt+1.

Our assumption is practical in many robotics scenarios,
since at is simply a choice of a compute model to process
inputs, not a physical actuation decision. For example, a
robot can run a fast perception DNN on images xt at every
timestep and its choice to optionally consult a slower DNN
at does not affect the new image observation xt+1, which is
instead largely affected by its ego-motion and surroundings.
Our assumption will not hold for fast-moving robots whose
control decisions are heavily dependent on the perception
model they invoke, which we discuss in our future work.

Theorem 1: The optimal model selection policy that solves
Problem 1 is of the form:

π∗(xt, ytfast) = 1

(
β

α
cslow <

E
(
L(ytfast, y

t
oracle)− L(ytslow, y

t
oracle)

)
︸ ︷︷ ︸

task accuracy gain

Proof: By Assumption 1, the action at at every time does
not affect the next state xt+1. Thus, given any input xt, the
actions at are independent, so to maximize the cumulative
reward it suffices to maximize the reward at every time-
step independently. Recall from Equation 1 that the reward
depends on two choices of at, that is, at ∈ {0, 1}. Therefore,
Problem 1 can be rewritten as:

π∗(xt, ytfast) = argmax
at∈{0,1}

E(Rt(at))

Substituting in the reward definition (Equation 1), we see that
we should choose the slow model only when the associated

reward is higher than continuing with the fast model. Thus,
we choose at = 1 only when:

−αE
(
L(ytoracle, y

t
slow)

)
− β(cslow + cfast) >

−αE
(
L(ytoracle, y

t
fast)
)
− βcfast

Simplifying, we arrive at the desired result:

π∗(st) = 1

(
β

α
cslow︸︷︷︸

extra compute cost

< (2)

E
(
L(ytoracle, y

t
fast)− L(ytoracle, y

t
slow)︸ ︷︷ ︸

task accuracy benefit

)
.

Theorem 1 suggests a simple model selection policy, which
estimates the model accuracy gap ∆L = E

(
L(ytoracle, y

t
fast)−

L(ytoracle, y
t
slow)

)
, and only chooses the slow model if the

gap is greater than a threshold that depends on the relative
compute costs and weights of accuracy via α, β. However,
the key challenge is that calculating ∆L requires querying the
slow model and knowledge of the ground-truth value ytoracle.
We now transition to two practical approaches to directly
instantiate the guarantees from Theorem 1 in practice.

First, we note that in many practical deployment scenarios,
the ground-truth oracle values are not present. In such
practical settings, the more accurate slow model simply
serves as the ground-truth, such as when a slow human
supervisor makes ground-truth decisions. In the absence of
human annotations, a large, compute-intensive DNN can serve
as the slow model and ground-truth. Thus, we present the
following lemma of Theorem 1.

Lemma 1: The optimal model selection policy that solves
Problem 1, when ytoracle = ytslow at all times t is:

π∗(xt, ytfast) = 1

(
β

α
cslow < E

[
L(ytfast, y

t
slow)

])
Proof: The proof is the same as Theorem 1, where we

note that E
(
L(ytoracle, y

t
slow)

)
= 0 when the oracle and slow

models are identical.
For our evaluation, we use Lemma 1 as our model selection
policy as it best reflects practical autonomous deployments.
The key challenge to directly applying Theorem 1 and Lemma
1 is to accurately estimate the loss between fast and slow
models solely using predictions from the fast model. However,
we now show we can indeed compute the expected accuracy
benefit for a broad class of fast and slow models that are
related by provable approximation guarantees. Specifically,
in Subsection III-A, we instantiate the guarantees of Lemma
1 to provide a closed-form, analytic model selection policy
for linear regression problems. Crucially, we then extend our
analysis to DNN inference in Subsection III-B.

Lemma 1 provides a general framework for model selection.
For a novel setting, it can be instantiated by selecting the: (i)
compute models, (ii) loss function, (iii) compute model cost,
and (iv) characterizing the statistical relationship between
compute models to derive the selection policy. Sections III-A
and III-B instantiate Lemma 1 for specific cases of Linear
Regression and DNN inference.

A. Analytical Results for Linear Regression

We now apply the guarantees from Lemma 1 to an
illustrative warm-up example of high-dimensional linear
regression. Recall that our challenge is to estimate the
expected value of ytslow from the information available
to the selection policy, namely input xt and fast model
prediction ytfast. To overcome this challenge, we apply results
to approximate linear regression models using coresets [12],
which are importance-ranked subsets of a large training
dataset. Importantly, a model trained on just the coreset will
provably approximate the predictions of one trained on the
full dataset. For example, a fast model could be trained on
only a core-set of local data on-board a robot while a large
one could be trained on multiple robots’ data in the cloud.

Compute Models: Let the fast and slow compute models
fi be linear regression models fi(x) = Aix + bi, where
i ∈ {fast, slow}, Ai ∈ Rm×n, and bi ∈ Rm×1. We assume
the slow model fslow is learned on a full set of training
samples from a joint distribution on X × Y , while the fast
model is only trained on a core-set of the original data.

Loss Function: Let the loss function be the standard L2

norm loss: L(yt1, y
t
2) = ||yt1− yt2||22; where yt1, y

t
2 ∈ Rm. The

following coreset guarantees follow from [12]:
Property 1 (Relation between fast and slow models [12]):

For all t, given input xt, denote the compute model outputs
as ytfast = ffast(x

t) and ytslow = fslow(xt). Then, there exists
an ε > 0 such that:

ytfast ∈
[
ytslow, (1 + ε)ytslow

]
, (3)

where X and Y are the input and output distributions, meaning
xt ∼ X , and ytslow, y

t
fast ∼ Y . [12] provides the approximation

factor ε based on the relative size of the core-set compared
to the full training set.

Property 1 allows us to relate the fast and slow model
predictions as:

ytslow ≤ ytfast ≤ (1 + ε)ytslow

or, ytslow ∈
[
ytfast

1 + ε
, ytfast

]
(4)

Thus, the loss function can be upper bounded as:

L(ytfast, y
t
slow) ≤ ε2 · (ytfast)

2

(1 + ε)2
. (5)

Finally, we can use Equation 5 and Lemma 1 to provide
a closed-form model selection policy for Problem 1 in the
linear regression setting:

π(xt, ytfast) = 1

(
β

α
cslow <

ε2 · (ytfast)
2

(1 + ε)2

)
. (6)

We stress that Lemma 1 provides the optimal solution and
the above solution is an approximation since we upper-bound
the loss function between fast and slow models. However,
our subsequent experiments show this is a very tight bound
and implementing Eq. 6 yields very close performance to an
unrealizable oracle solution that has perfect knowledge of
the fast and slow model predictions.

B. Analytical Results for Deep Neural Networks (DNNs)
We now provide a similar analysis to the linear regression

scenario for the important case when a robotic perception
DNN has been compressed using recently developed coreset
guarantees [9], [10]. Specifically, [9] compresses fully con-
nected DNNs with ReLU activations by targetedly removing
weights with low relative importance via coresets. [10]
extends this work to convolutional neural networks (CNNs) by
using coresets to remove convolutional filters that a prediction
is least sensitive to, which enables a compressed DNN to
provably approximate its original counterpart.

Compute Models: Let the models fi: Rn → Rm, where
i ∈ {fast, slow} be DNNs. Both models are trained on a set
of samples drawn from a joint data distribution on X × Y .

Loss Function: As for linear regression, the loss function
is an L2 norm loss, such as for depth estimation from a
perception CNN.

We now use the following guarantees for DNNs.
Property 2 (Relation between fast and slow models):

For all t, given xt, ytfast = ffast(x
t), and ytslow = fslow(xt),

there exist an ε, δ > 0, such that the following holds [9],
[10]:

P
(
ytfast ∈

[
(1− ε)ytslow, (1 + ε)ytslow

])
≥ 1− δ, (7)

P
(
ytfast ∈

[
ytslow −

M

2
, ytslow +

M

2

])
≤ δ, (8)

where M ≥ 0 is an upper bound on the error described below.
ε and δ depend on the extent of DNN compression. Further,
input xt ∼ X and outputs ytslow, y

t
fast ∼ Y .

Equation 8 and bound M arise from the observation that
in practical engineering scenarios, the outputs of a neural
network and thus the loss will be bounded since they have
physical meaning. For example, for a regression loss with
perception, M ≥ 0 could be derived from the largest depth-
reading a depth sensor can register. Likewise, for classification,
M is naturally bounded by 1 since the outputs y are softmax
scores from a cross-entropy loss.

We now use the core-set relationship to analyze Lemma 1
for DNN inference as follows:

ytslow ∈

{[
ytfast
1+ε ,

ytfast
1−ε

]
with prob. ≥ 1− δ[

ytfast − M
2 , y

t
fast + M

2

]
with prob. ≤ δ.

(9)

Thus, using Equation 9, the loss can be upper bounded as:

L(ytfast, y
t
slow) ≤

{
ε2·(ytfast)

2

(1−ε)2 with probability (1− δ)
M with probability δ.

(10)

Therefore, the expectation of the loss function is:

E
[
L(ytfast, y

t
slow)

]
≤ δM + (1− δ)

(
ε2 · (ytfast)

2

(1− ε)2

)
. (11)

Finally, we can apply Equation 11 and Lemma 1 to provide
a closed-form model selection policy for Problem 1 in the
DNN setting:

π(xt, ytfast) = 1

(
β

α
cslow < δM+(1−δ)ε

2 · (ytfast)
2

(1− ε)2

)
(12)

As for linear regression, we emphasize Lemma 1 is optimal
and Eq. 12 is an approximation since we are bounding
the expectation using the core-set guarantee. However, our
experiments show that implementing Eq. 12 as a proxy for
Lemma 1 works well in practice. More broadly, we emphasize
that core-set guarantees are simply one way to instantiate
the general policy provided in Lemma 1. For example, a
roboticist could also use other practically-relevant models
such as random forests or even approximate databases if they
can reliably relate fast and slow model accuracy.

IV. APPLICATION SCENARIOS

We now describe example application scenarios of high-
dimensional linear regression, DNN inference, and reachable
set computation for a simulated Mars Rover to demonstrate
the theoretical guarantees from Section III.

A. Linear Regression

Using the analytical results from Subsection III-A, we
demonstrate our model selection policy by simulating it on a
toy example of linear regression. Let fslow : R4 → R4

[0,1] be
any general-purpose linear regression model. The amount of
time fslow takes to generate an output is 2.5 seconds. Using
coresets, we compress the linear regression model fslow, to a
faster linear regression model ffast. The fslow model takes 1
second to generate an output. The compression is such that
the relation in Equation 3 holds with ε = 0.1.

We chose α = 1 and β = 0.003 to emphasize accuracy
over compute efficiency in our simulations, although α, β can
be flexibly set by a user. We implement the model selection
policy as in Equation 6, and demonstrate its performance
in Section V against benchmark policy selection algorithms
(discussed in Subsection IV-D).

B. Compute Efficient Robotic Perception

We now stress-test our algorithm on a scenario, inspired
by [13], where an aircraft must autonomously track a runway
center-line using a wing-mounted camera for state estimation.
This scenario, henceforth referred to as the TaxiNet scenario
as per [13], uses a DNN to map from camera images
to an estimate of the aircraft’s lateral distance from the
runway center-line d and heading angle θ, which are linearly
combined to create the aicraft’s steering control. We chose the
TaxiNet scenario since the central idea is broadly applicable
to resource-constrained robotics, such as low-power drones
that use efficient vision models to estimate their real-time
pose relative to a landing site.

We trained a ResNet-18 DNN [14] to serve as the slow
perception model fslow using over 50K images from the
standard X-Plane simulator [15] using a publicly-available
dataset [16]. The ResNet-18 achieved a low MSE loss of
0.038 on an independent test dataset of 18,372 images,
where each image took 0.17 seconds for inference on a
CPU. We compressed fslow to yield a quantized ResNet-18
as ffast, which was 47.21% faster but had a 64% higher loss,
illustrating a clear need for model selection.

For the TaxiNet scenario, we chose the model costs of
cslow = 0.017 and cfast = 0 based on their relative inference

times and α = 1, β = 3 × 10−4 to emphasize safety
(low loss) over compute costs. Our model selection results
are demonstrated in Section V along with example DNN
predictions from aircraft images in Figure 4 (Right).

C. Reachable Set Computation
In this subsection, we apply our model selection policy

to safety assessment for robot navigation. Consider a robot,
such as a Mars rover, navigating an unexplored environment.
The robot has to assess whether its maneuvers are safe while
considering environment uncertainties such as the coefficient
of friction, wind disturbances, etc.. This is done by computing
a reachable set, a set that contains all the states a rover can
potentially reach. The robot can make the maneuver safely
if the reachable set does not overlap with any obstacles.
The reachable set computed by the fast compute model has
confidence that is an order of magnitude lesser than the
reachable set computed by the slow model.

We assume that the closed loop dynamics of the robot is
given as a nonlinear system. For computing the reachable
sets, we approximate the nonlinear dynamics locally as an
uncertain linear system, where the coefficients in the dynamics
belong to a bounded range.

Example 1: Consider the discrete uncertain linear dynami-

cal system x+ = Λx where Λ =
[
1 α
4 6,

]
where x is the state,

x+ is the next state, and α ∈ [−2, 2] represents either the
modeling uncertainty or a parameter. Given an initial state x,
the reachable set of the uncertain linear system includes the
set of states reached by the system for any value of α in the
interval [−2, 2] for a specified time horizon t.

Prior work [17], [18], [19] has shown that computing
reachable sets for linear systems with uncertainties is a
computationally expensive process. Recently, a statistical
approximation of the reachable set has been presented
in [20]. The confidence of the statistical approximation
can be tuned by the user according to her performance
and accuracy requirements. Leveraging the flexibility of
this statistical approach, we generate a fast compute model
which has medium confidence and slow model that has
high confidence over the computed reachable sets. Given the
various constraints on robot resources, the model selection
policy should invoke the appropriate compute model to
guarantee safety while minimizing the cost.

Formally, consider a linear dynamical system with uncer-
tainties, represented as x+ = Λx, where Λ ⊂ Rn×n is an
uncertain dynamical matrix. The reachable set of the current
state x up to a time horizon t, is denoted as RS(Λ, x, t).
Though the dynamics is given as x+ = Λx, it can encompass
the open loop behavior x+ = ΛAx + ΛBu (where ΛA,ΛB
are uncertain matrices), if a control sequence u is provided.
In such cases, the uncertain matrices ΛA,ΛB are combined
together to Λ by concatenating the state and open-loop control.

A system is unsafe if the reachable set intersects with the
unsafe set, such as obstacles. That is, given an unsafe set
U ⊂ Rn, a system is unsafe if and only if RS(Λ, x, t)∩U 6= ∅.
Given µ > 0 and a set S ⊆ Rn, we denote the uniform
expansion (bloating) of set S by µ as Bµ(S).

We now formally present the model selection problem for
safety assessment of robot navigation.

Computation Models: The compute models
i ∈ {fast, slow}, denoted as RSi(Λ, x, t), compute
approximations of the reachable set of an uncertain linear
system defined by Λ [20]. The statistical guarantee Gi
associated with RSi is as follows:

Gi : for any A ∈ Λ, P
(
RSi(A, x, t) ⊆ RSi(Λ, x, t)

)
≥ pi

Gi has a type I error of δi. Here, the confidence pi ∈ R[0,1]

and allowable type I error δi are user-given parameters to
the models. Intuitively, Gi means the probability that the
reachable set of any sample dynamics is contained within
the reachable set RSi(·) is at least probability pi. Computing
high-confidence approximations of the reachable set requires
more statistical samples and therefore a higher computational
time and cost. In particular, the required confidence pi set by
a user for statistical guarantee Gi is directly proportional to
the required number of samples. Thus, we set the slow model
to be a high-confidence reachable set and the fast model
to be a lower-confidence approximation, so pslow > pfast,
δslow ≤ δfast, and therefore cslow > cfast. We denote the
outputs of the fast and slow models as ytfast = RSfast(Λ, x, t)
and ytslow = RSslow(Λ, x, t).

The crux of our selection policy is that we can relate the
reachable sets returned by both models by a factor of ε:

Property 3 (Relationship between fast and slow models):
Given Λ and θ, for all t, there exists an ε such that:

B1−ε
(
RSslow(Λ, x, t)

)
⊆ RSfast(Λ, x, t) (13)

or, RSslow(Λ, x, t) ⊆ B 1
1−ε

(
RSfast(Λ, x, t)

)
. (14)

In a calibration dataset, we can compute the fast and slow
model reachable sets for all time steps. Then, we can set ε to
be the minimum factor to bloat the robot’s set such that the
bloated version over-approximates the slow model’s reachable
set at all times. Thus, a robot can quickly run the fast model,
bloat it by 1

1−ε , and continue planning if the bloated set does
not intersect an unsafe region, as formalized below.

Loss Function: Given the safety-critical nature of naviga-
tion, the loss is 0 when the reachable set doesn’t intersect an
unsafe set and ∞ otherwise. Defining the reachable sets used
to compute intersections with obstacles as Θfast = B 1

1−ε
(ytfast)

and Θslow = ytslow = RSslow(Λ, x, t), the loss for any model
i ∈ {fast, slow} is:

L(Θi) =

{
0 Θi ∩ U = ∅
∞ otherwise.

(15)

Finally, using Equation 14 and Theorem 1, the model
selection policy that solves Problem 1 for safety assessment
during robot navigation is:

π∗(ytfast) = 1

(
B 1

1−ε
(ytfast) ∩ U 6= ∅

)
. (16)

Intuitively, the above policy exploits the relationship between
fast and slow models by first bloating the fast model’s
reachable set by a factor of 1

1−ε to create a guaranteed over-
approximation of the slow model’s reachability computation.

If the over-approximation does not intersect obstacles, we
are guaranteed safety and simply proceed. If not, we need to
invoke the slow model to assess its higher-fidelity reachable
set and re-plan a trajectory if it indicates unsafety. While we
implemented our policy with α = 0.7, β = 0.3 to prioritize
safety, safety is also heavily emphasized in the loss function
(Eq. 15) since the penalty is ∞ for collisions.

D. Benchmark Algorithm

We evaluate the performance of our model selection policy
against the following benchmark policies:
Fast: This policy always uses the fast model with prediction
ytfast for all t.
Slow: This policy always uses the slow model with prediction
ytslow for all t.
Random: The robot randomly chooses between the fast and
slow model with equal probability.
Our Selector: This represents our model selection policy
from Equations 6, 12, and 16.
Oracle: This strategy assumes that the slow model’s output
is available to the model selection function at the time of
inference. Thus, this strategy only selects the slow model
when that decision has a better reward than using the fast
model. The oracle is an upper-bound, unrealizable strategy
since it assumes privileged knowledge of the slow model.

V. EVALUATION

The principal objective of our evaluation is to show that
our model selection policies from Lemma 1 and Equations
6, 12, and 16 achieve a significantly higher reward than
benchmark model selection policies. Further, we show how
our policy achieves better accuracy with a lower cost than
competing benchmarks on simulations of linear regression,
aircraft taxiing with state-of-the-art DNN perception models,
and rover navigation with real Martian terrain data. All our
code (in Python) and models are publicly available at [21].

A. Linear Regression Results

We now evaluate our selection policy for linear regression,
as described in Equation 6 and Subsection IV-A. The key
highlight is that our policy achieves 245.4% higher reward
than benchmarks in 100 trials, each of duration N = 105

timesteps with stochastic Gaussian inputs xt. Figures 2 (Left)
and 3 (Left) show the cumulative rewards and trade-off
between accuracy and cost, respectively, of all algorithms.

B. Deep Neural Networks (DNN)

We now evaluate our model selection policy for the TaxiNet
aircraft taxiing scenario from Subsection IV-B. Our key
result on 18,372 test images is shown in Figure 2 (Center),
where our policy (Our Selector) achieves 22.22% higher
reward than competing benchmarks and is within 10.18% the
performance of an upper-bound Oracle. Moreover, Figure
3 (Center) shows that our model selection policy achieves
low loss with low cost unlike competing policies. This is
because our policy leverages the statistical correlation between
models to mostly rely on the fast model to reduce cost,
but also opportunistically queries the slow model for higher

Fig. 2: Rewards. (Left: Linear Regression, Center: DNN, Right: Mars Rover Reachable Set). We illustrate the cumulative rewards (Eq. 1) gathered by
various policies on the Linear Regression, DNN perception (TaxiNet), and Mars Reachable Set scenarios, respectively. Clearly, our policy (Our Selector)
achieves the maximum reward compared to other realizable benchmarks and is close to the oracle in all cases.

Fig. 3: DNN Cost vs. Accuracy. (Left: Linear Regression, Center: DNN, Right: Mars Rover Reachable Set). Cost vs. Loss trade-off achieved by various
model selection policies on all scenarios. In all cases, we observe that the Fast policy has low cost but low accuracy, Slow has high accuracy but high
cost, and Random lies sub-optimally in the middle (with a high variance). Only the selection policy proposed in this paper (Our Selector) achieves a
delicate balance by exploiting the statistical relationship between models to intelligently consult the slow model.

Fig. 4: Left: (Safe Navigation of a Mars Rover). We consider navigation of a simulated rover on real Mars HiRise terrain data [22], where the red point
clouds are obstacles indicating regions of high elevation, as processed in [23]. First two images: We show the reachable sets of two different possible routes
taken by the Mars Rover. The reachable set in green is computed by the slow model, whereas the one in blue comes from the fast model. Path safety is
determined by assessing if the reachable set (accounting for uncertainties), intersects red obstacles. Clearly, our model selection policy uses the slow model
only when the rover makes tricky maneuvers. Otherwise, when the rover is far from obstacles, the fast model is sufficient to determine safety, allowing us
to maintain high safety with a lower compute time. Third image: We show the relationship beween reachable sets computed by the fast model (in blue) and
the slow model (in black). Crucially, our policy uses the over-approximated reachable set of the slow model as computed by the fast model (in cyan), that
is, B 1

1−ε
(ytfast). Clearly, our model selection policy only consults the slow model when it suspects a possible collision when the set represented in cyan

intersects with a red obstacle. Our policy always led to safe, collision-free, efficient navigation by exploiting the relationship between fast and slow models.
Right: (Aircraft TaxiNet DNN Output). The output of the fast and slow DNN models for a ResNet-18 TaxiNet model. Given an image, the final output
shown is the rudder control.

accuracy. However, our policy is careful to only invoke the
slow, accurate model when there is a substantial accuracy
gain, leading it to be queried only 68.6% of the time.

C. Reachable Set Computation

We now demonstrate the performance of our model
selection policy (Equation 16) to determine the safety of
a simulated Mars Rover navigating steep obstacles on terrain
from NASA’s HiRise Dataset [22], [23]. A low-power rover
must always be safe, but also fast and compute-and-power-
efficient while accounting for reachable sets while planning.

The rover is assumed to follow a linearized bicycle model

with bounded perturbations in the dynamics matrix for yaw
angle. Given an intended path, we use our model selection
policy (Equation 16) to determine safety given uncertain
dynamics while minimizing compute time. Specifically, given
a start set, desired goal, and a set of way-points, we compute
a reference trajectory using a cubic spline planner, which
is followed using Model Predictive Control (MPC). Using
the planned states x and controls u at every time, our model
selection policy must determine the trajectory’s safety by
invoking either a fast or slow reachable set computation
model as described in Subsection IV-C.

Figure 4 (Left, first two images) shows how our policy

(Equation 16) safely, but efficiently, follows two different
paths near a red obstacle indicating an unsafe terrain gradient
above 20 degrees. The key benefit of our approach is that the
robot mostly uses the fast reachable set computation (blue)
for high-efficiency and only intelligently consults the higher-
fidelity slower model during tricky turns close to an obstacle.
Indeed, Figure 4 (Left, third image) precisely shows how our
policy (Equation 16) exploits the relationship between fast
and slow models to selectively query the slow model only
when required during key turns. The fast model’s reachable
set result is in blue, the slow model’s result is in black, and
the over-approximation from bloating the fast model’s result
by B 1

1−ε
(ytfast) is in cyan.

Clearly, even the over-approximation rarely intersects
unsafe obstacles and it is only necessary to consult a fine-
grained result from the slow model (black) when the over-
approximation is too conservative and needs to be refined. In
all scenarios, we rigorously verified the simulated rover is
safe and never hits an obstacle despite dynamics uncertainties.
Figures 2 (Right) and 3 (Right) quantitatively illustrates
the superior efficiency and accuracy (safety) of our policy,
since it achieves the highest reward, never hits an obstacle,
and efficiently only queries the slow model on-demand near
critical obstacles.

Limitations of Our Work: In the future, we plan to account
for more sophisticated nonlinear dynamics using Hamilton-
Jacobi-Bellman reachability analysis. Finally, future work
should address multi-step decision-making, where model
selection decisions affect subsequent measurements and
control decisions.

VI. CONCLUSION

To scale the deployment of low-power robotic swarms, it is
increasingly important to optimize for compute energy, cost,
and latency alongside standard metrics of task accuracy and
resiliency. This paper presents a general algorithm for robots
to flexibly trade-off task accuracy and compute cost in an
interpretable manner with provable statistical guarantees. Our
key insight is to leverage the statistical correlations between
models to predict the marginal accuracy gain of a large model
and balance it with additional compute costs. This general
principle allows our framework to widely apply to cloud
robotics, DNN perception, and reachability analysis.

In the future, we plan to address safety guarantees and
investigate whether we can co-train large and small DNNs
such that we can synthesize an interpretable run-time monitor
that can transfer authority to a trusted controller if the
DNNs are operating in uncertain regimes. Overall, we
anticipate our model-selection results will become stronger
with future advances in DNN verification and compression
with approximation guarantees.

REFERENCES

[1] S. Chinchali, A. Sharma, J. Harrison, A. Elhafsi, D. Kang, E. Pergament,
E. Cidon, S. Katti, and M. Pavone, “Network offloading policies for
cloud robotics: A learning-based approach,” in Proceedings of Robotics:
Science and Systems, Freiburg im Breisgau, Germany, June 2019.

[2] A. Rahman, J. Jin, A. Cricenti, A. Rahman, and M. Panda, “Motion and
connectivity aware offloading in cloud robotics via genetic algorithm,”
in GLOBECOM 2017-2017 IEEE Global Communications Conference.
IEEE, 2017, pp. 1–6.

[3] M. Cakmak and A. L. Thomaz, “Designing robot learners that ask
good questions,” in 2012 7th ACM/IEEE International Conference on
Human-Robot Interaction (HRI). IEEE, 2012, pp. 17–24.

[4] D. Whitney, E. Rosen, J. MacGlashan, L. L. Wong, and S. Tellex,
“Reducing errors in object-fetching interactions through social feedback,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 1006–1013.

[5] K. N. Kaipa, A. S. Kankanhalli-Nagendra, N. B. Kumbla, S. Shriyam,
S. S. Thevendria-Karthic, J. A. Marvel, and S. K. Gupta, “Enhancing
robotic unstructured bin-picking performance by enabling remote
human interventions in challenging perception scenarios,” in 2016
IEEE International Conference on Automation Science and Engineering
(CASE). IEEE, 2016, pp. 639–645.

[6] A. E. Eshratifar and M. Pedram, “Runtime deep model multiplexing
for reduced latency and energy consumption inference,” in 2020 IEEE
38th International Conference on Computer Design (ICCD). IEEE,
2020, pp. 263–270.

[7] N. Dorka, J. Meyer, and W. Burgard, “Modality-buffet for real-time
object detection,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020, pp. 10 543–10 549.

[8] T. Q. Dinh, Q. D. La, T. Q. Quek, and H. Shin, “Learning for
computation offloading in mobile edge computing,” IEEE Transactions
on Communications, vol. 66, no. 12, pp. 6353–6367, 2018.

[9] C. Baykal, L. Liebenwein, I. Gilitschenski, D. Feldman, and D. Rus,
“Data-dependent coresets for compressing neural networks with ap-
plications to generalization bounds,” in International Conference on
Learning Representations, 2019.

[10] L. Liebenwein, C. Baykal, H. Lang, D. Feldman, and D. Rus, “Provable
filter pruning for efficient neural networks,” in 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[11] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, ser. Proceedings of Machine Learning
Research, vol. 97. PMLR, 2019, pp. 6105–6114.

[12] C. Boutsidis, P. Drineas, and M. Magdon-Ismail, “Near-optimal coresets
for least-squares regression,” IEEE Transactions on Information Theory,
vol. 59, no. 10, pp. 6880–6892, 2013.

[13] K. D. Julian, R. Lee, and M. J. Kochenderfer, “Validation of image-
based neural network controllers through adaptive stress testing,” in
2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC), 2020, pp. 1–7.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 770–778.

[15] “X-plane 11,” https://www.x-plane.com/.
[16] S. M. Katz, A. Corso, S. Chinchali, A. Elhafsi, A. Sharma, M. Pavone,

and M. J. Kochenderfer, “Nasa uli aircraft taxi dataset,” 2021, stanford
Research Data, https://purl.stanford.edu/zz143mb4347.

[17] M. Althoff, C. Guernic, and B. Krogh, “Reachable set computation
for uncertain time-varying linear systems,” 01 2011, pp. 93–102.

[18] R. Lal and P. Prabhakar, “Bounded error flowpipe computation of
parameterized linear systems,” in 2015 International Conference on
Embedded Software (EMSOFT), 2015, pp. 237–246.

[19] B. Ghosh and P. S. Duggirala, “Robust reachable set: Accounting
for uncertainties in linear dynamical systems,” ACM Trans. Embed.
Comput. Syst., vol. 18, no. 5s, Oct. 2019.

[20] B. Ghosh and P. S. Duggirala, “Reachability of linear uncertain systems:
Sampling based approaches,” University of North Carolina at Chapel
Hill, Tech. Rep., 2020. [Online]. Available: https://drive.google.com/
file/d/18qhQh1rZZEMRzjhPCknRsdUy567sqXRZ/view?usp=sharing

[21] B. Ghosh, S. Chinchali, and P. S. Duggirala, “Interpretable trade-offs
between robot task accuracy and compute efficiency,” University of
North Carolina at Chapel Hill, Tech. Rep., 2021. [Online]. Available:
https://sites.google.com/view/modelselection

[22] G. Doran, S. Lu, L. Mandrake, and K. Wagstaff, “Mars orbital image
(HiRISE) labeled data set version 3,” 2019.

[23] M. Nakanoya, S. Chinchali, A. Anemogiannis, A. Datta, S. Katti,
and M. Pavone, “Task-relevant representation learning for networked
robotic perception,” CoRR, vol. abs/2011.03216, 2020.

https://www.x-plane.com/
https://purl.stanford.edu/zz143mb4347
https://drive.google.com/file/d/18qhQh1rZZEMRzjhPCknRsdUy567sqXRZ/view?usp=sharing
https://drive.google.com/file/d/18qhQh1rZZEMRzjhPCknRsdUy567sqXRZ/view?usp=sharing
https://sites.google.com/view/modelselection

	I Introduction
	II Problem Statement
	II-A Formal Problem Definition
	II-B Discussion on the Problem Definition

	III An Algorithmic Approach To Model Selection
	III-A Analytical Results for Linear Regression
	III-B Analytical Results for Deep Neural Networks (DNNs)

	IV Application Scenarios
	IV-A Linear Regression
	IV-B Compute Efficient Robotic Perception
	IV-C Reachable Set Computation
	IV-D Benchmark Algorithm

	V Evaluation
	V-A Linear Regression Results
	V-B Deep Neural Networks (DNN)
	V-C Reachable Set Computation

	VI Conclusion
	References

