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Introduction: Model Selection Problem
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The robot is required 
to perform a task, for 
a given input, at each 
step.

The robot has 
additional access to a 
slower, but highly 
accurate, model.

The robot is aware of the accuracy 
correlation between the models

Propose a strategy that invokes the 
slower model only when there is a 
provable gain in accuracy.



Introduction: Model Selection Problem
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A robot needs to perform a task based on its 
perception, such as autonomous driving

Local: Fast, and 
less accurate Cloud: Slow, but 

highly accurate

Invoke the cloud or 
not?

Always available

Model Selection Problem



Motivation: Safe Navigation
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• Safe navigation using Reachable Sets.
• What are Reachable Sets?

Starting at 
an initial 
set (𝑡 = 0)

Reachable set 
at (𝑡 = 1)

Reachable set 
at (𝑡 = 2)

Reachable set 
at (𝑡 = 3)



Motivation: Safe Navigation
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• When is the navigation safe?

Safe: Reachable set does not intersect
with unsafe set.



Motivation: Safe Navigation
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• When is the navigation safe?

Unsafe: Reachable set intersects with 
unsafe set.



Motivation: Safe Navigation
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Task: Reach the goal, avoiding obstacles.

Local: Fast, and low 
confidence reachable sets Cloud: Slow, but high 

confidence reachable sets

Always available



Motivation: Safe Navigation
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𝑡 = 1

• At each step: the robot needs to check safety.

• Check safety: compute reachable set and check for intersection.

Keep using the local 
reachable set 

computation model

Invoke the cloud 
reachable set 

computation model

Uses local, for this time 
step



Motivation: Safe Navigation
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Local

Keep using the local 
reachable set 

computation model

Invoke the cloud 
reachable set 

computation model

Uses local, for this time 
step

𝑡 = 2



Motivation: Safe Navigation
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Local

Local

𝑡 = 3

Keep using the local 
reachable set 

computation model

Invoke the cloud 
reachable set 

computation model

Invokes cloud, for this 
time step



Motivation: Safe Navigation
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Local

Local

Cloud

𝑡 = 4



Motivation: Safe Navigation
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Local

Local

Cloud

Local



Motivation: Safe Navigation
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Local

Local

Cloud

Model Selection Sequence: Local, Local, Cloud, Local

Local



Model Features: Loss and Cost

• Define: Loss associated with the models.

• Define: Cost associated with the models.
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Optimality: Terms

• Loss (conversely, accuracy): Depends on the computation model.
• Linear Regression, DNN: L1, L2, etc.

• Safe Navigation using reachable sets: Confidence, Binary Loss, etc.

• Cost: Depending on the task involved.
• Examples: compute time of the model (local/cloud), etc.
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Local: Fast, and 
less accurate Cloud: Slow, but 

highly accurate

≥𝑙𝑜𝑠𝑠

≤𝑐𝑜𝑠𝑡



Contribution of this Paper

• Provably Optimal model selection strategy (or sequence).

• Next: Formally define Optimality in terms of Loss and Cost.
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Optimality: Reward

• Reward: To define optimality formally, we define 𝑅𝑒𝑤𝑎𝑟𝑑𝑡, at each 
step 𝒕, as:

• 𝑅𝑒𝑤𝑎𝑟𝑑𝑡 = − 𝛼 ⋅ 𝐿𝑜𝑠𝑠𝑡 − 𝛽 ⋅ 𝐶𝑜𝑠𝑡𝑡
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𝛼, 𝛽: User Given

Penalize the loss at the given step — based 
on the selected model (local/cloud)

Penalize the cost incurred at the given step 
— based on the selected model



Optimality: Reward

• Reward of Cloud and Local:

• 𝑅𝑒𝑤𝑎𝑟𝑑𝑡
𝐶𝑙𝑜𝑢𝑑 = − 𝛼 ⋅ 𝐿𝑜𝑠𝑠𝑡

𝐶𝑙𝑜𝑢𝑑 − 𝛽 ⋅ 𝐶𝑜𝑠𝑡𝑡
𝐶𝑙𝑜𝑢𝑑

• 𝑅𝑒𝑤𝑎𝑟𝑑𝑡
𝐿𝑜𝑐𝑎𝑙 = − 𝛼 ⋅ 𝐿𝑜𝑠𝑠𝑡

𝐿𝑜𝑐𝑎𝑙 − 𝛽 ⋅ 𝐶𝑜𝑠𝑡𝑡
𝐿𝑜𝑐𝑎𝑙
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Optimality: Problem Statement

• Total Reward: Cumulative reward up to time 𝑇:

• 𝑅𝑒𝑤𝑎𝑟𝑑 = σ𝑡=1
𝑇 𝑅𝑒𝑤𝑎𝑟𝑑𝑡

• Objective: Compute a model selection strategy – a sequence of 
Local/Cloud – that maximizes the cumulative reward.
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Local, Local, . . ., Local, Local

Local, Local, . . ., Local, Cloud

Local, Cloud, . . ., Cloud, Local

Cloud, Cloud, . . ., Cloud, Cloud

All possible 
sequences

Compute a sequence – without exploring all 
sequences – that maximizes the cumulative reward



Optimality: Problem Statement Illustration
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Lo
ss

Cost

All Cloud: Cloud, Cloud, . . ., Cloud

All Local: Local, Local, . . ., Local

A model selection 
sequence that belongs 
to this region 



Crux of the Solution: Intuition

• Intuitively, invoke the cloud model if and only if:

• 𝑅𝑒𝑤𝑎𝑟𝑑𝑡
𝐶𝑙𝑜𝑢𝑑 > 𝑅𝑒𝑤𝑎𝑟𝑑𝑡

𝐿𝑜𝑐𝑎𝑙
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Always available 
to the robot

Computing this, 
without invoking 
the cloud, is the 
main challenge



Crux of the Solution: Model Relationship

• Leverage the relationship – often statistical – between the local and 
the cloud models output.
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Output of the cloud model

1 ± 𝜖 × Output of the cloud model

Output of the local model: 
guaranteed to belong in 
this region.

More Precisely:

• Local o/p ∈ [ 1 − 𝜖 ⋅ Cloud o/p , 1 + 𝜖 ⋅ Cloud o/p ], with probability (1-𝛿)

• Local o/p ∈ [Cloud o/p -
𝑀

2
, Cloud o/p -

𝑀

2
], with probability 𝛿



Crux of the Solution: Guess the Cloud

• Robot computes the output range of the Cloud – without invoking it –
from the output of local model.
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Output of the local model

Leveraging the 
relationships

Output range of the cloud model



Crux of the Solution: Guess the Cloud Reward

• Robot computes the output range of the Cloud – without invoking it –
from the output of local model.

• From the computed output range, compute the expected reward 
obtained by the Cloud.
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Output of the local model

Leveraging the 
relationships

Output range of the cloud model

Compute

Compute the 
expected 

𝑅𝑒𝑤𝑎𝑟𝑑𝑡
𝑐𝑙𝑜𝑢𝑑

obtained by the 
cloud



Crux of the Solution: Model Selection Policy 

• At a given time step 𝑡, invoke the cloud model if and only if:

• Expected 𝑅𝑒𝑤𝑎𝑟𝑑𝑡
𝐶𝑙𝑜𝑢𝑑 > 𝑅𝑒𝑤𝑎𝑟𝑑𝑡

𝐿𝑜𝑐𝑎𝑙
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Proof of Optimality: Given in the paper! 



Crux of the Solution: Closed Form Solutions

• Closed form solutions to the model selection policy –
𝑅𝑒𝑤𝑎𝑟𝑑𝑡

𝐶𝑙𝑜𝑢𝑑 > 𝑅𝑒𝑤𝑎𝑟𝑑𝑡
𝐿𝑜𝑐𝑎𝑙 – for the following cases are given in 

the paper:

• Both models (Local/Cloud) are Linear Regression, with varying cost and loss.

• Both models are Deep Neural Network (DNN), with varying cost and loss.

• Safe Navigation with Reachable Sets, where the models compute reachable 
sets with varying cost and confidence (equivalently, loss).
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Evaluation

• Demonstrate on following cases:
• DNN: Aircraft Taxiing
• Safe Navigation with Reachable Sets: Navigation of a simulated Mars Rover 

(with uncertainty in the yaw angle) on a real Martian Terrain.

• Against the following Benchmark:
• All Robot: Local compute model is used for all time steps.
• All Cloud: Cloud compute model is used for all time steps.
• Random: A random sequence of model selection.
• Oracle: Exact cloud model’s output is known – Note that this is an 

unrealizable policy.
• Our Selector: Model selection policy proposed in this paper.
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Evaluation: DNN

• Evaluated the model selection policy on Aircraft Taxiing – movement 
of the aircraft with its own power.
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Local: Fast, and 
less accurate

Cloud: Slow, but 
highly accurate

Rudder Control: a linear 
combination of the taxiway center 
and heading angle 

Computed at each time step.



Evaluation: DNN
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Rudder Controls

Model Losses



Evaluation: DNN
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Evaluation: Safe Navigation with Reachable 
Sets
• Evaluated the model selection policy on navigation of a simulated 

Mars Rover - with uncertainty in the yaw angle - on a real Martian 
Terrain.
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The Rover’s sensor, responsible for calculating 
the yaw angle, has an error associated with its 
reading



Evaluation: Safe Navigation with Reachable 
Sets
• Evaluated the model selection policy on navigation of a simulated 

Mars Rover - with uncertainty in the yaw angle - on a real Martian 
Terrain.
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The red point
clouds are obstacles 
indicating regions of high 
elevation



Evaluation: Safe Navigation with Reachable 
Sets
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Blue: Low confidence reachable 
sets obtained from the local 
model

Green: High confidence reachable 
sets obtained from the cloud 
model

Insight: Our model selection 
policy invokes the cloud model 
only when the Rover is making 
tricky maneuvers.



Evaluation: Safe Navigation with Reachable 
Sets
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Thank You!


