Offline and online monitoring of scattered
uncertain logs using uncertain linear dynamical
systems™*

Bineet Ghosh!® and Etienne André?

! The University of North Carolina at Chapel Hill, NC, The United States of America
2 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Abstract. Monitoring the correctness of distributed cyber-physical sys-
tems is essential. We address the analysis of the log of a black-box cyber-
physical system. Detecting possible safety violations can be hard when
some samples are uncertain or missing. In this work, the log is made
of values known with some uncertainty; in addition, we make use of an
over-approximated yet expressive model, given by a non-linear exten-
sion of dynamical systems. Given an offline log, our approach is able to
monitor the log against safety specifications with a limited number of
false alarms. As a second contribution, we show that our approach can
be used online to minimize the number of sample triggers, with the aim
at energetic efficiency. We apply our approach to two benchmarks, an
anesthesia model and an adaptive cruise controller.

Keywords: energy-aware monitoring, cyber-physical systems, formal methods

1 Introduction

The pervasiveness of distributed cyber-physical systems is highly increasing, ac-
companied by associated safety concerns. Formal verification techniques usually
require a (white-box) model, which is not often available, because some compo-
nents are black-box, or because the entire system has no formal model. In addi-
tion, formal verification techniques for cyber-physical systems are often subject
to state space explosion, often preventing a satisfactory scalability. Therefore,
monitoring, as a lightweight yet feasible verification technique, can bring prac-
tical results of high importance for larger models.

Monitoring aims at analyzing the log of a concrete system, so as to deduce
whether a specification (e.g., a safety property) is violated. Monitoring can be
done offline (i.e., after the system execution, assuming the knowledge of the
entire log), or online (at runtime, assuming a partial log). When the log is an
aperiodic timed sequence of valuations of continuous variables, with a logging

* This work is partially supported by the ANR-NRF French-Singaporean research
program ProMiS (ANR-19-CE25-0015), and the National Science Foundation (NSF)
of the United States of America under grant number 2038960.

https://orcid.org/0000-0002-1371-2803
https://orcid.org/0000-0001-8473-9555
https://www.loria.science/ProMiS/

2 Bineet Ghosh and Etienne André

(a) Full (b) Monitored (c) Extrapo (d) Extrapo (e) violation (f) Uncertain

Fig. 1: Monitoring at discrete time steps

not occurring at every discrete time step, and when the system under monitoring
is a black box, a major issue is: how to be certain that, in between two discrete
valuations, the specification was not violated at another discrete time step at
which no logging was performed? For example, consider a system for which
a logging at every discrete time step would yield the log depicted in Fig. 1la.
Assume the logging was done at only some time steps, given in Fig. 1b, due to
some sensor faults, or to save energy with only a sparse, scattered logging. How
to be certain that, in between two discrete samples, another discrete sample (not
recorded) did not violate the specification? For example, by just looking at the
discrete samples in Fig. 1b, there is no way to formally guarantee that the unsafe
zone (i.e., above the red, dashed line) was never reached by another discrete
sample which was not recorded. In many practical cases, a piecewise-constant
or linear approximation (see, e.g., Figs. 1c and 1d, where the large blue dots
denote actual samples, while the small green dots denote reconstructed samples
using some extrapolation) is arbitrary and not appropriate; even worse, it can
yield a “safe” answer, while the actual system could actually have been unsafe at
some of the missing time steps. On the contrary, assuming a completely arbitrary
dynamics will always yield “potentially unsafe”—thus removing the interest of
monitoring. For example, from the samples in Fig. 1b, without any knowledge
of the model, one can always envision the situation in Fig. le, which shows the
variable x crossing the unsafe region (dashed) at some unlogged discrete time
step—even though this is unlikely if the dynamics is known to vary “not very
fast”.

Contributions In this work, we address the problem of performing monitoring
over a set of scattered and uncertain samples. First, we cope with uncertainties
from the sensors by allowing for uncertain samples, given by zonotopes over
the continuous variables; that is, at each logged timestamp, the log gives not a
constant value for the continuous variables, but a zonotope. A simple case of an
uncertain log over a single variable x is depicted in Fig. 1f in the form of simple
intervals. The timestamp at each discrete sample of the log is however supposed
to be constant (i.e., a single point). Second, to over-approximate the system be-
havior, and in the spirit of the “model-bounded monitoring” proposed in [34], we
use an extension of linear dynamical systems, extended with uncertainty, i.e., al-
lowing uncertainty in the dynamics matrix [22]. Having some over-approximated
knowledge of the system is a natural assumption in practice: when monitoring a
car, one generally knows an upper-bound on its maximum speed, or on its max-

Monitoring of uncertain logs using uncertain linear dynamical systems

imum acceleration (perhaps depending on its current speed). To cope with the
liberal dynamics of our extension of linear dynamical systems, we use a recent
technique [18], that performs an efficient reachability analysis for such uncertain
linear dynamical systems. The use of such an over-approximation of the actual
system is the crux of our approach, allowing us to discard unlikely behaviors,
such as the unlikely safety violation depicted in Fig. le.

Our first main contribution is to propose a new rigorous analysis technique
for offline monitoring of safety properties over scattered uncertain samples, us-
ing uncertain linear systems as an over-approximation of the system. This over-
approximation allows us to extrapolate the behavior since the latest known sam-
ple, and to rule out safety violations at some missing discrete samples. Note that
our approach uses some discrete analysis as underlying reachability computation
technique, and will not however guarantee the absence of safety violations at ar-
bitrary (continuous) timestamps; its main advantage is to offer formal guarantees
in the context of missing discrete samples for a given logging granularity.

Our second main contribution focuses on energy-efficient online monitoring.
For each recorded sample, we run a reachability analysis, and we derive the
smallest next discrete time step ¢ in the future at which the safety property may
be violated depending on the latest known sample and the over-approximated
model dynamics. In a context in which monitoring simply observes the behavior
and does not lead to corrective actions, any sample before ¢ is useless because we
know from the over-approximated model dynamics that no safety violation can
happen before ¢t. Therefore, we can schedule the next sample at time ¢, which
reduces the number of discrete samples, and therefore the energy consumption
and bandwidth use. We show that our method is correct, i.e., we can safely
discard discrete samples without missing any unsafe behavior. We show the
practical applicability of our approach on two benchmarks: an anesthesia model,
and an adaptive cruise controler.

Outline We review related works in Section 2. We recall uncertain linear dy-
namical systems in Section 3. We introduce our (offline and online) monitoring
frameworks in Section 4, and run experiments in Section 5.

2 Related works

Monitoring Monitoring complex systems, and notably cyber-physical systems,
drew a lot of attention in the last decades, e.g., [23,6,5,34,24]. In parallel to moni-
toring specifications using signal temporal logics (see e.g., [13,20,29]), monitoring
using automata-based specifications drew recent attention. Complex, quantita-
tive extensions of automata were studied in the recent years: after timed pattern
matching on timed regular expressions [31] was proposed by Ulus et al., Waga
et al. proposed a technique for timed pattern matching [32] (with an additional
work by Bakhirkin et al. [4]) and then for parametric timed pattern match-
ing [3,33,35], with application to offline monitoring.

4 Bineet Ghosh and Etienne André

In [34], we proposed model-bounded monitoring: instead of monitoring a
black-box system against a sole specification, we use in addition a (limited, over-
approximated) knowledge of the system, to eliminate false positives. This over-
approximated knowledge is given in [34] in the form of a linear hybrid automaton
(LHA) [19], an extension of finite-state automata with continuous variables; their
flow in each location (“mode”) is given as a linear constraint over derivatives; lo-
cation invariants and transition guards are given by linear constraints over the
system variables. We use in [34] both an ad-hoc implementation, and another one
based on PHAVerLite [7]. In this work, we share with [34] the principle of using
an over-approximation of the model to rule out some violation of the specifica-
tion. However, we consider here a different formalism, and we work on discrete
samples. In terms of expressiveness of the over-approximated model: 7) our ap-
proach can be seen as less expressive than [34], in the sense that we have a single
(uncertain) dynamics, as opposed to LHAs, where a different dynamics can be
defined in each mode; this also allows us to propose a simpler (therefore more
efficient) analysis, as each new sample allows us to restart from an exact basis,
while in [34] at each new sample, the system (from an algorithmic point of view)
can be in “different modes at the same time”; ii) conversely, our dynamics is also
significantly more expressive than the LHA dynamics of [34]; we consider not
only the class of linear dynamical systems, but even fit into a special case of
non-linear systems, by allowing uncertainy in the model dynamics—this is what
makes our model an over-approximation of the actual behavior. In addition, we
also allow for uncertain logs, coping with sensor uncertainties—mnot considered
in [34]. We also propose a new ad-hoc implementation based on [18].

In [25,26], a monitor is constructed from a system model in differential dy-
namic logic [28]. The main difference between [25,26] and our approach relies in
the system model: in [25,26], the compliance between the model and the behavior
is checked at runtime, while our model is assumed to be an over-approximation
of the behavior—which is by assumption compliant with the model.

Reachability in linear dynamical systems In [2], given a continuous time linear
system with input, the system is discretized and reachable sets for consecu-
tive time intervals are computed. At each step, the state transition matrixz is
expressed using the Peano-Baker series. The series is then numerically approx-
imated iteratively using Riemann sums. Then a zonotope-based convex hull is
computed over-approximating the result of all possible matrices in the uncer-
tain matrix. In [11], Combastel and Raka extend an existing algorithm based
on zonotopes so that it can efficiently propagate structured parametric uncer-
tainties. As a result, they provide an algorithm for computation of envelopes
enclosing the possible states and/or outputs of a class of uncertain linear dy-
namical systems. In [22], given an uncertain linear dynamical system & = A,z,
Lal et al. provide a sampling interval 6 > 0, given an € > 0, s.t. the piecewise
bilinear function, approximating the solution by interpolating at these sample
values, is within e of the original trajectory. [16] identifies a class of uncertain-
ties by a set of sufficient conditions on the structure of the dynamics matrix A,,.
For such classes of uncertainties, the exact reachable set of the linear dynamical

Monitoring of uncertain logs using uncertain linear dynamical systems

system can be computed very efficiently. But this method is not applicable for
arbitrary classes of uncertainties. In [18], given an uncertain linear dynamical
system, we provide two algorithms to compute reachable sets. The first method
is based on perturbation theory, and the second method leverages a property
of linear systems with inputs by representing them as Minkowski sums. In [17],
given an uncertain linear dynamical system, we provide an algorithm to compute
statistically correct over-approximate reachable sets using Jeffries Bayes Factor.
Note that uncertain linear dynamical systems are a special subset of non-linear
systems. Thus, uncertain linear dynamical systems can also be modelled as a
non-linear system. Some additional works that deal with computing reachable
sets of non-linear systems are [8,30,10,14,1,21,9].

3 Preliminaries

Formal analysis of safety critical systems requires a precise mathematical model
of the system, such as linear dynamical systems. But in reality, the precise, exact
model is almost never available—parameter variations, sensor and measurement
errors, unaccounted parameters are few such causes that make the availability
of a precise model impossible. Presence of such uncertainties in the model makes
the safety analysis of these systems, using traditional methods, useless. Thus,
for the analysis to be indeed useful, the safety analysis must consider all possible
uncertainties. In [22], the authors provide a model, known as uncertain linear
dynamical systems, to capture such uncertainties. Consider the following example
of an uncertain linear dynamical system.

Ezample 1 ([16, Example 1.1]). Let a discrete linear dynamical system z =
Az, where A = [(1) ‘2’] and « represents either the modeling uncertainty or a
parameter, assuming 2 < a < 3. Note that any safety analysis assuming a fized
value of o will render the analysis useless—for the safety analysis to be indeed
sound, it must consider all possible values of «, and they cannot be enumerated.

Intuitively, uncertain linear dynamical systems model the uncertainties in the
system by representing all possible dynamics matrices of the system—clearly,
this forms a special class of non-linear dynamical systems. To perform safety
analysis of uncertain linear dynamical systems, these works provide reachable
set computation techniques that account for all possible uncertainties.

Definition 1 (Uncertain linear dynamical systems (|16, Defini-
tion 2.4])). An uncertain linear dynamical system is denoted as

T = Ax (1)
where A C R™™ ™ s the uncertain dynamics matriz.

Definition 2 (Reachable set of an uncertain linear dynamical systems
([16, Definitions 2.3 and 2.4])). Given an initial set 6y and time step t € Z,
the reachable set of an uncertain linear dynamical system is defined as:

RS(A,00,t) =0, ={ 0| 0 =Ea(00,1), A € A}. (2)

6 Bineet Ghosh and Etienne André
where £4(0p,t) = A'0y. An alternative definition is:

RS(A,00,) = 6, = | €a(b0,1). (3)

AeA

Note that uncertain linear dynamical systems are capable of modelling sys-
tems with parameters or when the system dynamics is not perfectly known—the
system has modelling uncertainties. [22,16,18,17] propose various algorithms to
compute reachable sets of these systems that account for uncertainties. In this
work, we leverage a recently proposed reachable set computation technique, given
in [18], to propose our offline and online monitoring algorithm, primarily due to
its efficiency vis-a-vis our setting.

Given an initial set §y C R™ and given a time step ¢, we denote by 6; C R™
the reachable set of the system (given by Eq. (1)) at time step ¢. Next, we define
a log of the system with uncertainties.

Definition 3 (Log). Given an uncertain linear dynamical system as in
Eq. (1), a finite length (uncertain) log of the system is defined as follows:
£={(01) | 0, C O, t < H} where H is a given time bound.

Each tuple (ét, t) is called a sample. Observe that our samples are not neces-
sarily reduced to a point. The length of log /—number of samples in {—is given
by |¢|. Given a log ¢, the k-th sample of ¢ is given as ¢ = (étk_,tk), where étk is
an over-approximation of the system at time step t;. Note that the length of a
log is not necessarily equal to H, but |¢| < H: therefore, our logs are scattered, in
the sense that they do not necessarily contain a sample for each t € {1,..., H}.
We further note that the uncertainties in the logs, arising from the sensor uncer-
tainties of the logging system, are independent of the uncertainties in the system
modelling (Definition 1). We assume that each sample of the log contains the
true state of the system at a given time step. Note that this generally holds in
practice: the physical sensors (such as used in medical devices, cars, etc.) record
values within an error tolerance, thus giving a range of values containing the
actual value.

We call a log ¢ accurate if it satisfies the following condition: V1 < k <
|| : étk_ = 6;,. Given an uncertain linear dynamical system, z* = Az with an
initial set 8g C R™, an over-approzimate reachable set of x at time step t is
overReach(4, 6o, t), such that 6; C overReach(4,8y,t). We use the technique
proposed in [18] to compute overReach(A, 6y, t) in this work.

4 Monitoring using uncertain linear dynamical systems
as bounding model

In this section, we propose the two main contributions of this work: 1) Offline
monitoring: Given a log with uncertainties, we propose an algorithm to infer
the safety of a system as given in Eq. (1). We prove our method’s soundness.
2) Online monitoring: We propose a framework to infer safety of a system,

Monitoring of uncertain logs using uncertain linear dynamical systems

Sample at this time step

'

(a) Offline (b) Online

sampleyy; = ([l .t +5) UnsafeSet
sampley, = (@) .t

Fig.2: (2a): Offline Monitoring. Black: Two consecutive samples, k and k + 1,
at time steps ¢t and ¢ + 5 respectively. Blue: The over-approximate reachable set
computed from sample k using overReach(.). (2b): Online Monitoring. Blue:
Over-approximate reachable set computed, at each step, using overReach(.).

as in Eq. (1), that triggers the logging system to sample only when needed.
Note that, as we only consider the system at discrete time steps, the method
cannot be sound nor complete, i.e., there always exists a small possibility that
the system might violate the safety specification in between two concrete samples
(this will be discussed in Section 6). However, our online method is both sound
and complete at the discrete time stamps, and under the assumption that the
samples are free from uncertainties. That is, our method infers the system to be
safe if and only if the actual behavior of the system is safe at any discrete time
stamp, when the logging system can generate accurate samples of the system.
Put it differently, we guarantee that skipping some logging in the future using our
method will not remove any sample where a violation could have been observed.

4.1 Offline monitoring

Our first contribution addresses offline monitoring: in this setting, we assume
full knowledge of the uncertain log, usually after an execution is completely over.
Before we propose our offline algorithm, we illustrate the approach in Fig. 2a.
Consider two consecutive samples k& and k + 1, marked in black, at time steps ¢
and t+5 respectively. The reachable sets, in blue, represent the over-approximate
behaviors possible by the system between time steps ¢ and t 4+ 5. Consider the
case where at time step t + 2 the over-approximate reachable set intersects with
the unsafe region. Once our algorithm detects a possible unsafe behavior, it
computes the intersection between the over-approximate reachable set (here,
the reachable set at time-step ¢ + 2) and the unsafe set. Then it checks whether
the reachable set, given in the next sample (k + 1), is reachable from the unsafe
region—if yes, it infers unsafe; if not, it infers safe. Now, we formally propose
our offline monitoring method in Algorithm 1 for a given log ¢ with uncertainty.

Description The for loop, starting in line 1, traverses through each sample, and
checks if the system can reach a possibly unsafe behavior between two consec-
utive samples (computed in lines 2 and 3), using over-approximate reachable

8 Bineet Ghosh and Etienne André

Algorithm 1: Offline monitoring

input : An uncertain log £ of a system 21T = Az, and an unsafe set U/.
output : Return safe (resp. unsafe) if the actual system behavior is safe
(resp. potentially unsafe).

1 forke{l,...,|¢| -1} do
2 (R // current sample
3 (étk+1,tk+1) —liy1 // next sample
4 ta =tgr1 —te — 1 // time gap between two samples
5 forpe{l,...,ta—1} do
6 if 0, 1p NU # 0 then
7 P <—étk+pmu ; // compute the unsafe region of the system
8 ta =tr+1 — (te +) 3
9 ¥ < overReach(A, v, tq) ;

/* Check if next sample is reachable from unsafe */
10 if 9N 0y,,, #0 then
11 L return unsafe ; // next sample is reachable from unsafe
12 | étk+p+1 — overReach(A,éthrp,l) ;

13 return safe ;

set computation. If the over-approximate reachable set between two consecutive
samples intersect with the unsafe set (line 6), we perform a refinement as follows
(line 7-line 11): We compute the unsafe region (intersection between unsafe set
and over-approximate reachable set) in line 7, then check if we can reach the next
sample from the unsafe region (line 9-line 11). If the next sample is reachable
from the unsafe behavior, we conclude the system is unsafe (line 10-line 11).

Soundness and incompleteness Our proposed offline monitoring approach is
sound at discrete time steps, but not complete—there might be cases where our
algorithm returns unsafe even though the actual system is safe. The primary
reason for its incompleteness is due to the fact that overReach(.) computes an
over-approximate reachable set. Formally:

Theorem 1 (soundness at discrete time steps). If the actual system is
unsafe at some discrete time step, then Algorithm 1 returns unsafe. Equivalently,
if Algorithm 1 returns safe, then the actual system is safe at every discrete step.

Proof. Let the actual trajectory 7, between two samples k and k + 1, become
unsafe at time step t,,,,. Therefore, the over-approximate reachable set, computed
by overReach(-) at time step t,,, will also intersect with the unsafe set (due
to soundness of overReach(:)). Note that the actual trajectory 7, originating
from the sample k, intersects the unsafe region at time step t,,, and reaches the
sample k + 1. The refinement module (Algorithm 1, line 7-line 11), using over-
approximate reachable sets will therefore infer the same, concluding the system
behavior to be unsafe.

Monitoring of uncertain logs using uncertain linear dynamical systems

4.2 Online monitoring

Algorithm 2: Online monitoring

input : An uncertain system x* = Ax, an unsafe set I, time bound H.
output : Return safe iff the actual system behavior is safe.
1 6y Sampling at time step 0 ; // initial behavior of the system.
/* Check whether the initial behavior is safe */
2 if o NU # 0 then return unsafe ;
3 forte{1,2,...,H—1} do
0r+1 + overReach(A, 0, 1) ; // over-approximate reachable set
/* Check whether the over-approximate reachable set is unsafe */

5 if 0,1 NU # 0 then

6 liy1 < Sample at time step t +1 ;
/* Check whether the actual reachable set is unsafe */
7 if £t+1 nUu ?é 0 then
8 L return unsafe ;
9 ét+1 =fliy1 // reset to actual behavior

10 return safe;

Given a time bound H, we propose our online monitoring method in Algo-
rithm 2. The online monitoring algorithm begins by sampling the system at
the initial time step, say 0, in line 1. As a sanity check, we confirm if the initial
behavior of the system is safe in line 2. The for loop starting in line 2—where
each iteration corresponds to the set of actions for a time step t—performs the
following: At a given time step ¢, we compute the over-approximate reachable set
at the next time step ¢ + 1 (line 6). If the computed over-approximate reachable
set intersects with the unsafe set, we sample the system at time step ¢ + 1 to
check if the actual behavior is also unsafe (line 5-line 9). If safe, we reset the
behavior (line 9); if unsafe, we return unsafe (line 8). Intuitively, this method
samples the actual system only when the over-approximate reachable set, com-
puted by overReach(.), intersects the unsafe set. This process is illustrated in
Fig. 2b.

Soundness and completeness Our online monitoring algorithm is correct (safe
and complete) at discrete time steps, provided the samples are accurate—it re-
turns safe if and only if the actual behavior of the system is safe at all discrete
time steps, when accurate samples are obtained. Intuitively, we get the com-
pleteness from the fact that it returns unsafe if and only if the (accurate) sample
is unsafe. Formally:

Theorem 2 (correctness at discrete time steps). Algorithm 2 returns
safe iff the actual behavior at all discrete time steps is safe.

10 Bineet Ghosh and Etienne André

Proof. The soundness proof—if the actual behavior is unsafe, Algorithm 2 infers
unsafe—is straightforward. Hence, we now argue the completeness—if the actual
behavior is safe, Algorithm 2 infers safe. Note that, Algorithm 2 infers the system
behavior as unsafe only when a sampled log (actual behavior) becomes unsafe:
therefore, if the samples are free from uncertainties (i.e., exact), Algorithm 2 is
complete.

Remark 1. While our aim is to consider continuous systems, note that, for
discrete-time systems, our approach is entirely correct (sound and complete),
without the restriction to “discrete time steps”, since we can find a granularity
small enough for the discrete-time evolution. This is notably the case for sys-
tems where the behavior does not change faster than a given frequency (e.g., the
processor clock).

5 Case studies

We demonstrate the applicability and usability of our approach on two examples,
a medical device and an adaptive cruise control. We implemented our online and
offline monitoring algorithms in a Python-based prototype tool MoULDyS. Tool,
models and raw results are available through a GitHub repository®. All our
experiments were performed on a Lenovo ThinkPad Mobile Workstation with
i7-8750H CPU with 2.20 GHz and 32 GiB memory on Ubuntu 20.04 LTS (64 bit).
Our tool uses numpy, scipy, mpmath for matrix multiplications, [18] to compute
overReach(.), and the Gurobi engine for visualization of the reachable sets.

Implementation details vis-a-vis Algorithms 1 and 2 The intersection checking
between two sets in Algorithms 1 and 2 has been implemented as an optimization
formulation in Gurobi. That is, given two sets, our implementation of intersection
check returns true iff the two sets intersect. In other words, our intersection check
is ezxact. In contrast, computing the result of the intersection between two sets
adds an over-approximation in our implementation—given two sets, we compute
a box hull of the two sets and then compute intersection of the two box hulls.
Therefore, the only over-approximate operation we perform in Algorithms 1
and 2—apart from overReach(-)—is Algorithm 1 line 7.

Generating scattered uncertain logs for offline monitoring At each time step,
the logging system may take a snapshot of the system evolution at that time
step; the logging occurs with a probability p (given). In other words, at each time
step, it records the evolution of the system with probability p. Clearly, due to the
probabilistic logging, this logger is not guaranteed to generate periodic samples.
We also do not assume that the samples logged by the logging system, at each
time step, are accurate—the logging system, due to sensor uncertainties, logs an
over-approximate sample of the system at that time step. In our experiments,
each log was generated statically from our bounding model (the uncertain linear

3 https://github.com/bineet-coderep/MoULDyS

https://github.com/bineet-coderep/MoULDyS

Monitoring of uncertain logs using uncertain linear dynamical systems

dynamical system) by simulating its evolution from an uncertain initial set (i.e.,
not reduced to a point). In the end, we get an uncertain log (as in Definition 3).

Logging system for online monitoring When the logging system is triggered, at
a time step, to generate a sample, the logging system records the evolution of
the system and sends it to the online monitoring algorithm. Similar to the offline
logging system, we do not assume that the samples logged by the logging system
are perfectly accurate. Here, all the generated logs are safe.

Research questions We consider the following research questions:

1. Effect of logging probability (number of log samples) on the rate of false
alarms raised by the offline monitoring—inferring a behavior as “potentially
unsafe” when the actual behavior is “safe”.

2. For offline monitoring, does the size of the samples (in other words, volume
of the set obtained as sample), gathered at each step, have an impact on
the rate of false alarms? Put it differently, what is the effect, vis-a-vis false
alarms, of the amount of the uncertainty in the log?

3. For online monitoring, how frequent is the logging system triggered to gen-
erate a sample?

4. For the same execution, how do the outcome (in terms of verdict on safety by
the monitoring algorithms) and the efficiency (in terms of number of samples
needed) of the offline and online monitoring algorithms compare?

5.1 First benchmark: Anesthesia

We first demonstrate our approach on an automated anesthesia delivery
model [15]. The anesthetic drug considered in this model is propofol. Such safety
critical systems are extremely important to be verified formally before they are
deployed, as under or overdose of the anesthetic drug can be fatal to the patient.

Model: The model as in [15] has two components: 1) Pharmacokinetics (PK):
models the change in concentration of the drug as the body metabolizes it.
2) Pharmacodynamics (PD): models the effect of drug on the body. The PK
component is further divided into three compartments:) first peripheral com-
partment ¢, #) second peripheral compartment cq, iii) plasma compartment c,,.
The PD component has one compartment, called c.. The set of state variables
of this system is [cp c1 2 ¢c]T. The input to the system is the infusion rate of
the drug (propofol) u. The complete state-space model of this system in given
in [15, Equation 5].

Model parameters: The evolution of states—c,, c1, co—is dependent on
several parameters, such as: the weight of the patient (weight), the first order rate
constants between the compartments kg, k12, k13, k21 and ks;. The evolution of
the state c. is dependent on the parameter kg, the rate constant between plasma
and effect site.

Safety: The system is considered safe if the following concentration levels
are maintained at all time steps: ¢, € [1,6], ¢1 € [1,10], ¢z € [1,10], ce € [1,8].

11

12 Bineet Ghosh and Etienne André

[250 500 750 1000 1250 1500 1750 2000
Time

o 250 500 750 1000 1250 1500 1750 2000
Time

Probability of Logging

‘ 0
0 250 500 750 1000 1250 1500 1750 2000 [250 500 750 1000 1250 1500 1750 2000
Time Time

>

Size of the samples

Fig.3: Offline monitoring: We plot the change in concentration level of ¢, with
time. The volume of the samples increase from left to right, and the probability
of logging increases from bottom to top. The blue regions are the reachable
sets showing the over-approximate reachable sets as computed by the offline
monitoring, the black regions are the samples from the log given to the offline
monitoring algorithm, and the red dotted line represents safe distance level. Note
that although the top-row plots and the bottom left plots’ reachable sets seem
to intersect with the red line (unsafe set), the refinement module infers them
to be unreachable, therefore concluding the system behavior as safe—unlike the
bottom-right plot.

In this case study, we focus our attention on the effect of perturbation, in the
weight of the patient (weight), on the concentration level of plasma compart-
ment ¢,. We assume that the weight of the patient has an additive perturbation
of £0.8kg in this case study—at each time step, the weight of the patient is
weight + 0., 0, € [0,0.8]. With perturbation in the weight, we want to infer
safety of this system using monitoring.

We now answer questions (1)-(4), using Figs. 3 and 4. In Fig. 3: 4) the plots
in the bottom row have logging probability of 20%, and the plots in top row have
a logging probability of 40%; #4) the plots in left column and the right column
have been simulated with an initial set of [[3.4] [3.4] [4,5] [3.4]]T, u € [2,5] and

Monitoring of uncertain logs using uncertain linear dynamical systems

oJ il

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Time Time

Fig.4: Online monitoring: We plot the change in concentration level of ¢, with
time. The blue regions are the reachable sets showing the over-approximate
reachable sets as computed by the online monitoring, the black regions are the
samples generated when the logging system was triggered by the online monitor-
ing algorithm, and the red dotted line represents safe concentration levels. Left:
We apply our online monitoring to the anesthesia model. Right: We compare our
online and offline algorithms. The green regions are the reachable sets showing
the over-approximate reachable sets between two consecutive samples from the
offline logs, the magenta regions are the offline logs, given as an input to the of-
fline monitoring algorithm, generated by the logging system, and the red dotted
line represents safe concentration levels. The blue regions are the reachable sets
showing the over-approximate reachable sets as computed by the online moni-
toring, the black regions are the samples generated when the logging system was
triggered by the online monitoring algorithm, and the red dotted line represents
safe concentration levels.

[[2,4] (3.6] 3,6] [2.4]1] T, u € [2,10] respectively. That is, the volume of the samples
increases from left to right. In Fig. 4, we simulated the trajectory with an initial
set [[3.4] (341 [4,5] 3.4]] T, u € [2,5].

Answer to Question 1. We answer this question by comparing two sets figures
in the left column and the right column of Fig. 3. For the left column, i.e.,
with smaller sample size: the bottom-left plot took 51.40s and concluded the
system to be safe. The analysis in this plot invoked the refinement module of the
offline algorithm. But increasing the probability of logging, i.e., more number of
samples, as in the top-left plot, resulted in not invoking the refinement module
at all, thus taking 32.92s. For the right column, i.e., with larger sample size:
this analysis, as shown in the bottom-right column, took 1.73s to complete,
and concluded the system behavior to be unsafe. The behavior of the system,
shown in top-right plot with 40% probability of logging, results in inferring the
behavior of the system as safe, by invoking the refinement module several times.

13

14 Bineet Ghosh and Etienne André

Overall, this analysis, as shown in the top-right plot, took 35.93s to complete,
and concluded the system behavior to be safe.

Answer to Question 2. We answer this question by comparing two sets figures in
the top row and the bottom row of Fig. 3. For the bottom row, i.e., with smaller
logging probability: Increasing the volume of the samples results in inferring the
behavior from safe (bottom-left plot) to unsafe (bottom-right plot), as per the
offline monitoring algorithm. For the top row, i.e., with higher logging probability:
Increasing the volume of the samples results in not invoking the refinement
module (top-left plot) to invoking the refinement module several times (top-
right plot), as per the offline monitoring algorithm.

Answer to Question 3. The result is given in Fig. 4 (left). Using our online
algorithm, we were able to prove safety of the system in 109.04s. The online
algorithm triggered the logging system to generate samples for 83 time steps—
this is less than 5% of total time steps. We observe, as shown in Fig. 4 (left),
that the logging system is triggered more when the trajectory is closer to the
unsafe region.

Answer to Question 4. We compare our offline and online algorithms, for 2 000
time steps, on the same trajectory. The result is given in Fig. 4 (right). Note
that, using our online algorithm, we were able to prove safety of the system in
107.99s. The online algorithm triggered the logging system to generate samples
only 84 times. In contrast, the offline algorithm, with a log size of 115 (5%
logging probability) stopped at the 35th sample, (wrongly) inferring the system
as unsafe, taking 71.37s.

5.2 Second benchmark: Adaptive Cruise Control

We now apply our algorithms to an adaptive cruise control (ACC) [27]. An ACC
behaves like an ordinary cruise control when there is no car in the sight of its
sensor, and when there is a car in its sight, it maintains a safe distance.

Model: The model as in [27] has the following state variables: i) velocity of
the vehicle v, i) distance between the two vehicles h, and i) velocity of the
lead vehicle vy,. The state space of the system is given in [27, Equation 3|. The
set of state variables of this system is [v h v]T.

Model parameters: The model is dependent on two parameters: %) accel-
eration of the lead vehicle ar, and i) breaking force and torque applied to the
wheels as a lumped net force F. Note that the model is dependent of accelera-
tion of the vehicle ar, which is very hard to accurately measure due to sensor
uncertainties. Similarly the torque F' applied to the wheels is also dependent of
the coeflicient of friction of the ground. To reflect such uncertainties, we consider
ar, € [—0.9,0.6] and F € [-0.6,2.46].

Safety: The system is safe if the distance between vehicles h > 0.5.

Consider an event of a car crash, where the log stored by the car before
the crash, is the only data available to analyze the crash; such an analysis might
benefit police, insurance companies, vehicle manufacturers, etc. Using our offline
algorithm one can figure out if the car might have shown unsafe behavior or not.
Similarly, consider a vehicle on a highway with a lead vehicle in its sight. The

Monitoring of uncertain logs using uncertain linear dynamical systems

0 250 500 750 1000 1250 1500 1750 2000

0 25 500 750 1000 1250 1500 1750 2000
Time

Time

Probability of Logging

of g 1

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Time Time

Size of the samples

Fig.5: Offline monitoring: We plot the change in distance h between the vehi-
cles with time. The volume of the samples increase from left to right, and the
probability of logging increases from bottom to top.

ACC in such a case needs to continuously read sensor values to track several
parameters, such as acceleration of the lead vehicle, braking force, etc.—this
results in wastage of energy. Using our online monitoring algorithm, the car reads
sensor values only when there is a potential unsafe behavior. This intermittent
behavior will result in saving energy without compromising safety of the system.

Next, we answer questions (1)-(4), using Figs. 5 and 6. In Fig. 5: i) the plots
in the bottom row have logging probability of 20%, and the plots in top row
have a logging probability of 40%; i) the plots in left column and the right
column have been simulated with an initial set of [[15,15.01] [3,3.03] [14.9,15]] T and
[115,15.1] [3,3.5] [14.9,15‘1]]T respectively. In Fig. 4, we simulated the trajectory
with an initial set [[15,15.01] [3,3.03] [14.9,15]] T, u € [2, 5].

Answer to Question 1. We answer this question by comparing two sets figures
in the left column and the right column of Fig. 5. For the left column, i.e.,
with smaller sample size: the bottom-left plot took 19.08s and concluded the
system to be safe. This analysis in this plot invoked the refinement module of
the offline algorithm. But increasing the probability of logging, i.e., more number
of samples, as in the top-left plot, resulted in not invoking the refinement module
at all, thus taking 16.5s. For the right column, i.e., with larger sample size: The
analysis is similar to that of the left column. The bottom-right plot invoked the
refinement module several times, thus taking 20.84s, while the top-right plot
took 17.5s, as it invoked the refinement module a smaller number of times.

15

16 Bineet Ghosh and Etienne André

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Time ime

Fig. 6: Online monitoring: We plot the change in distance between two vehicle h
with time. The color coding is same as Fig. 4. Left: We apply our online moni-
toring to the ACC model. Right: We compare our online and offline algorithms.

Answer to Question 2. We answer this question by comparing two sets figures
in the top row and the bottom row of Fig. 5. For the bottom row, i.e., with
smaller logging probability: Comparing the bottom-left and bottom-right shows
that increasing sample volume results in invoking the refinement module more
frequently. A very similar behavior is seen by comparing the top row (i.e., with
higher logging probability).

Answer to Question 3. Using our online algorithm, we were able to prove safety
of the system in 104.58s. The online algorithm triggered the logging system to
generate samples for 53 time steps—this is less than 3% of total time steps. This
is shown in Fig. 6 (left).

Answer to Question 4. We compare our offline and online algorithm, for 2000
time steps, on the same trajectory. The result is given in Fig. 6 (right). Note
that, using our online algorithm, we were able to prove safety of the system in
124.46 s. The online algorithm triggered the logging system to generate samples
only 50 times. In contrast, the offline algorithm, with a log size of 281 (14%
logging probability) took 28.54s to infer that the system is safe.

5.3 General observations

In this section, we provide general answers to questions (1)-(4):

Answer to Question 1. Increasing the probability of logging reduces the chances
of inclusion of spurious behaviors due to over-approximate reachable set compu-
tation over longer time horizon. Therefore, it has a reduced chance of spuriously
inferring the system unsafe, also fewer chance of invoking the refinement module
(as there are less spurious behaviors).

Answer to Question 2. Increasing the size of samples (due to uncertainties or
inherent nature of the system) results in increasing chances of invoking the re-
finement module more frequently. It also increases the chance of (wrongly) in-
ferring the system to be unsafe, as the refinement module can in itself add to
the overapproximation.

Monitoring of uncertain logs using uncertain linear dynamical systems

Answer to Question 3. We observed that our online algorithm is able to prove
the system’s safety very efficiently with very few samples.

Answer to Question 4. We observed that for a given random log, the offline
algorithm was unable to prove safety of the system, whereas our online algorithm
was able to prove safety of the system, using fewer samples, by intelligently
sampling the system only when needed. We also note that, though here we just
demonstrated the result for one random log, but our internal experiments showed
that the online algorithm always needed fewer samples to prove safety—which is
unsurprising, as it is designed to sample the system only when needed. This can
also result in energy saving, as sampling usually requires energy and bandwidth.

Reachable sets computation using Flow* As uncertain linear dynamical systems
are a special type of non-linear systems, Flow* [8] would have been a natural
candidate to benchmark our offline and online monitoring implementation by
comparing various methods to compute overReach(:). However, we ran into the
following issues: i) To the best of our understanding, Flow* expects the model
of the continuous dynamics to be given as input, along with a discretization
parameter. Therefore, trying to encode the time-varying uncertainties in the
system as state variables will lead to discretization of the variables encoding
uncertainties; such discretization leads to undesired behavior, as those uncertain
variables will fail to capture the actual range of values that are possible at any
time step. 4) However, Flow* does allow time varying uncertainties, but only
additive*. Unfortunately, our benchmark requires multiplicative uncertainties.
Still, we believe Flow* could be compared with our implementation when the
bounding model has a simpler dynamics than our uncertain linear dynamical
systems.

6 Conclusion

We presented a new approach for monitoring cyber-physical systems against
safety specifications, using the additional knowledge of an over-approximation
of the system expressed using an uncertain linear dynamic system. Our approach
assumes as first input a log with exact (but scattered) timestamps and uncer-
tain variable samplings (in the form of zonotopes), and as second input an over-
approximated model, bounding the possible behaviors. The over-approximation
is modeled by uncertainty in the variables of the dynamics. In the offline setting,
we are thus able to detect possible violations of safety properties, by extrapo-
lating the known samples with the over-approximated dynamics, and if needed
using a second reachability analysis to check whether the next sample is “com-
patible” with the possible unsafe behavior, i.e., can be reached from the unsafe
zone. In the online setting, we are capable of decreasing the number of samples,
triggering a sample only when there might be a safety violation in a near fu-
ture, based on the latest known sample and on the over-approximated model
dynamics—increasing the energetic efficiency. Our method is sound in the sense

4 See example at https://flowstar.org/benchmarks/2-dimensional-1tv-system/

17

https://flowstar.org/benchmarks/2-dimensional-ltv-system/

18 Bineet Ghosh and Etienne André

(a) Discrete samples (b) Continuous behavior

Fig. 7: Incompleteness

that an absence of detection of violation by our method indeed guarantees the
absence of an actual violation at any discrete time step. In the online method,
provided the samples are accurate, our method is in addition complete, i.e., the
method outputs safe iff the actual system is safe at all discrete time steps. Put
it differently, we guarantee that not triggering a sample at some time steps is
harmless and will not lead to missing a safety violation.

Future works. On the log side, we considered fixed timestamps, but uncertain
values for the continuous variables; in fact, the timestamps could also be uncer-
tain. This makes sense when the samples are triggered by sensors distributed
over a network, which can create delays and therefore timed uncertainty. This
was not considered in our approach, and is on our agenda.

A possible threat to validity remains the enumeration of time steps in both
our algorithms (line 5 in Algorithm 1 and line 3 in Algorithm 2), which could slow
down the analysis for very sparse logs—even though this did not seem critical
in our experiments. Using skipping methods could help improving the efficiency
of our approach.

Another future work consists in increasing our guarantees, notably due to
the continuous nature of cyber-physical systems under monitoring. Indeed, even
with a rather fine-grained sampling showing no specification violation (e.g., in
Fig. 7a), it can always happen that the actual continuous behavior violated the
specification (e.g., in Fig. 7b). While setting discrete time steps at a sufficiently
fine-grained scale will help to increase the confidence in the results of our ap-
proach, no absolutely formal guarantee can be derived. Therefore, one of our
future works is to propose some additional conditions for extrapolating (contin-
uous) behaviors between consecutive discrete samples. Also, improving the scope
of our guarantees (in the line of, e.g., [12]) is on our agenda.

References

[1] Althoff, M.: An introduction to CORA 2015. In: ARCHQCPSWeek.
EPiC Series in Computing, vol. 34, pp. 120-151. EasyChair (2015).
https://doi.org/10.29007/zbkv

[2] Althoff, M., Le Guernic, C., Krogh, B.H.: Reachable set computation for
uncertain time-varying linear systems. In: HSCC. pp. 93-102. ACM (2011).
https://doi.org/10.1145/1967701.1967717

https://doi.org/10.29007/zbkv
https://doi.org/10.1145/1967701.1967717

3]

[4]

[5]

[6]

7]

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Monitoring of uncertain logs using uncertain linear dynamical systems

André, E., Hasuo, I., Waga, M.: Offline timed pattern matching un-
der uncertainty. In: ICECCS. pp. 10-20. IEEE Computer Society (2018).
https://doi.org/10.1109/ICECCS2018.2018.00010

Bakhirkin, A., Ferrére, T., Nickovic, D., Maler, O., Asarin, E.: Online timed pat-
tern matching using automata. In: FORMATS. LNCS, vol. 11022, pp. 215-232.
Springer (2018). https://doi.org/10.1007/978-3-030-00151-3_13

Bartocci, E., Deshmukh, J.V., Donzé, A., Fainekos, G.E., Maler, O., Nickovic, D.,
Sankaranarayanan, S.: Specification-based monitoring of cyber-physical systems:
A survey on theory, tools and applications. In: Lectures on Runtime Verification
— Introductory and Advanced Topics, LNCS, vol. 10457, pp. 135-175. Springer
(2018).https://doi.org/lo.1007/978—3—319—75632—5_5

Basin, D.A., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: RV-
CuBES. Kalpa Publications in Computing, vol. 3, pp. 19-28. EasyChair (2017)
Becchi, A., Zaffanella, E.: Revisiting polyhedral analysis for hybrid
systems. In: SAS. LNCS, wvol. 11822, pp. 183-202. Springer (2019).
https://doi.org/10.1007/978-3-030-32304-2_10

Chen, X., Abraham, E., Sankaranarayanan, S.: Flow*: An analyzer for non-
linear hybrid systems. In: CAV. LNCS, vol. 8044, pp. 258-263. Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_18

Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for non-
linear systems. In: RTSS. pp. 13-24. IEEE Computer Society (2016).
https://doi.org/10.1109/RTSS.2016.011

Chen, X., Sankaranarayanan, S., Abraham, E.: Under-approximate flowpipes
for non-linear continuous systems. In: FMCAD. pp. 59-66. IEEE (2014).
https://doi.org/10.1109/FMCAD.2014.6987596

Combastel, C., Raka, S.A.: On computing envelopes for discrete-
time linear systems with affine parametric uncertainties and bounded
inputs. IFAC Proceedings Volumes 44(1), 4525 — 4533 (2011).
https://doi.org/10.3182/20110828-6-IT-1002.02585

Dauer, J.C., Finkbeiner, B.; Schirmer, S.: Monitoring with verified guarantees. In:
Feng, L., Fisman, D. (eds.) RV. LNCS, vol. 12974, pp. 62-80. Springer (2021).
https://doi.org/10.1007/978-3-030-88494-9_4

Donzé, A., Ferrére, T., Maler, O.: Efficient robust monitoring for
STL. In: CAV. LNCS, wvol. 8044, pp. 264-279. Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_19

Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: A verification tool
for stateflow models. In: TACAS. LNCS, vol. 9035, pp. 68-82. Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0_5

Gan, V., Dumont, G.A.,; Mitchell, I.: Benchmark problem: A PK/PD model and
safety constraints for anesthesia delivery. In: ARCHQCPSWeek. EPiC Series in
Computing, vol. 34, pp. 1-8. EasyChair (2014). https://doi.org/10.29007/8drm
Ghosh, B., Duggirala, P.S.: Robust reachable set: Accounting for uncertainties in
linear dynamical systems. ACM Transactions on Embedded Computing Systems
18(5s), 97:1-97:22 (2019). https://doi.org/10.1145/3358229

Ghosh, B., Duggirala, P.S.: Reachability of linear uncertain systems: Sampling
based approaches. Tech. Rep. 2109.07638, arXiv (2021), https://arxiv.org/abs/
2109.07638

Ghosh, B., Duggirala, P.S.: Robustness of safety for linear dynamical systems:
Symbolic and numerical approaches. Tech. Rep. 2109.07632, arXiv (2021), https:
//arxiv.org/abs/2109.07632

19

https://doi.org/10.1109/ICECCS2018.2018.00010
https://doi.org/10.1007/978-3-030-00151-3_13
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-030-32304-2_10
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1109/RTSS.2016.011
https://doi.org/10.1109/FMCAD.2014.6987596
https://doi.org/10.3182/20110828-6-IT-1002.02585
https://doi.org/10.1007/978-3-030-88494-9_4
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.29007/8drm
https://doi.org/10.1145/3358229
https://arxiv.org/abs/2109.07638
https://arxiv.org/abs/2109.07638
https://arxiv.org/abs/2109.07632
https://arxiv.org/abs/2109.07632

20

(19]

20]

[21]

[22]

23]

[24]

25]

[26]

[27]

28]

[29]

(30]

[31]

32]

[33]

[34]

(35]

Bineet Ghosh and Etienne André

Halbwachs, N., Proy, Y.E., Raymond, P.: Verification of linear hybrid systems by
means of convex approximations. In: SAS. LNCS, vol. 864, pp. 223-237. Springer
(1994). https://doi.org/10.1007/3-540-58485-4_43

Jaksi¢, S., Bartocci, E., Grosu, R., Nguyen, T., Nickovié, D.: Quantita-
tive monitoring of STL with edit distance. FMSD 53(1), 83-112 (2018).
https://doi.org/10.1007/s10703-018-0319-x

Kong, S., Gao, S., Chen, W., Clarke, E.M.: dReach: §-reachability analysis for
hybrid systems. In: TACAS. LNCS, vol. 9035, pp. 200-205. Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0_15

Lal, R., Prabhakar, P.: Bounded error flowpipe computation of pa-
rameterized linear systems. In: EMSOFT. pp. 237-246. IEEE (2015).
https://doi.org/10.1109/EMSOFT.2015.7318279

Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: FORMATS and FTRTFT. LNCS, vol. 3253, pp. 152-166. Springer (2004).
https://doi.org/10.1007/978-3-540-30206-3_12

Mamouras, K., Chattopadhyay, A., Wang, Z.: A compositional frame-
work for quantitative online monitoring over continuous-time sig-
nals. In: RV. LNCS, wvol. 12974, pp. 142-163. Springer (2021).
https://doi.org/10.1007/978-3-030-88494-9_8

Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of ver-
ified cyber-physical system models. FMSD 49(1-2), 33-74 (2016).
https://doi.org/10.1007/s10703-016-0241-z

Mitsch, S., Platzer, A.: Verified runtime validation for partially observable hybrid
systems. Tech. rep. (2018), http://arxiv.org/abs/1811.06502

Nilsson, P., Hussien, O., Balkan, A., Chen, Y., Ames, A.D., Grizzle, J.W., Ozay,
N., Peng, H., Tabuada, P.: Correct-by-construction adaptive cruise control: Two
approaches. IEEE Transactions on Control Systems Technology 24(4), 1294-1307
(2016).https://doi.org/lo.1109/TCST.2015.2501351

Platzer, A.: The complete proof theory of hybrid systems. In: LICS. pp. 541-550.
IEEE Computer Society (2012). https://doi.org/10.1109/LICS.2012.64

Qin, X., Deshmukh, J.V.: Clairvoyant monitoring for signal temporal
logic. In: FORMATS. LNCS, vol. 12288, pp. 178-195. Springer (2020).
https://doi.org/10.1007/978-3-030-57628-8_11

Testylier, R., Dang, T.: NLTOOLBOX: A library for reachability computation of
nonlinear dynamical systems. In: ATVA. LNCS, vol. 8172, pp. 469-473. Springer
(2013). https://doi.org/10.1007/978-3-319-02444-8_37

Ulus, D., Ferrére, T., Asarin, E., Maler, O.: Timed pattern match-
ing. In: FORMATS. LNCS, vol. 8711, pp. 222-236. Springer (2014).
https://doi.org/10.1007/978-3-319-10512-3_16

Waga, M., Akazaki, T., Hasuo, I.: A Boyer-Moore type algorithm for timed pat-
tern matching. In: FORMATS. LNCS, vol. 9884, pp. 121-139. Springer (2016).
https://doi.org/10.1007/978-3-319-44878-7_8

Waga, M., André, E.: Online parametric timed pattern matching with automata-
based skipping. In: NFM. LNCS, vol. 11460, pp. 371-389. Springer (2019).
https://doi.org/10.1007/978-3-030-20652-9_26

Waga, M., André, E., Hasuo, I.: Model-bounded monitoring of hybrid systems.
ACM Transactions on Cyber-Physical Systems (2022), to appear

Waga, M., André, E., Hasuo, L.: Parametric timed pattern matching. ACM Trans-
actions on Software Engineering and Methodology (2022), to appear

https://doi.org/10.1007/3-540-58485-4_43
https://doi.org/10.1007/s10703-018-0319-x
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1109/EMSOFT.2015.7318279
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-030-88494-9_8
https://doi.org/10.1007/s10703-016-0241-z
http://arxiv.org/abs/1811.06502
https://doi.org/10.1109/TCST.2015.2501351
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1007/978-3-030-57628-8_11
https://doi.org/10.1007/978-3-319-02444-8_37
https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1007/978-3-319-44878-7_8
https://doi.org/10.1007/978-3-030-20652-9_26

	Offline and online monitoring of scattered uncertain logs using uncertain linear dynamical systems

