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Abstract. With the increasing autonomous capabilities of distributed
cyber-physical systems, the complexity of their models also increases
significantly, thus continually posing challenges to existing formal meth-
ods for safety verification. In contrast to model checking, monitoring
emerges as an effective lightweight, yet practical verification technique
capable of delivering results of practical importance with better scala-
bility. Monitoring involves analyzing logs from an actual system to de-
termine whether a specification (such as a safety property) is violated.
Monitoring techniques, such as those using reachability methods, may
fail to produce results when dealing with complex models like Deep Neu-
ral Networks (DNNs). We propose here a novel statistical approach for
monitoring that is able to generate results with high probabilistic guar-
antees. We evaluate our monitoring technique on three case studies.
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1 Introduction

Over the past decade, there has been a swift increase in the deployment of dis-
tributed autonomous systems across various domains. While formal methods
have proven successful in various safety-critical domains, several existing tech-
niques have been unable to cope with the growing complexity of these models.
Formal verification requires an accurate model, which may not often be avail-
able, because some components are black-box, or because the entire system has
no formal model. Despite some success in verifying formal models from the in-
dustry (e.g., [3,9,20,22]), formal verification techniques for autonomous systems
are often subject to state space explosion and conservative analysis.

Monitoring Contrary to model checking, monitoring is an effective lightweight,
yet feasible verification technique, that can bring practical results for systems
with relatively high complexity. Monitoring involves analyzing the log of a sys-
tem to determine if a given specification has been violated [7]. Deterministic
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monitoring—where safety guarantees that are not probabilistic but formally
ensured—encounters challenges in dealing with complex models like black-box
systems, DNN-based models, and Simulink models. These challenges include
limited adaptability to complex models, difficulties in achieving black-box trans-
parency, and scalability issues [7, 8, 15,24,25,30].
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Fig. 1: Proposed Monitoring Approach

Proposed Approach and Statistical
Hypothesis Testing This work, on
the other hand, aims to ensure that
autonomous systems are trustworthy,
which means they are safe for most
practical purposes with a high level
of confidence. This approach con-
trasts with approaches that strive
for formal safety, which might not
be practical for complex systems. As
such, we propose a statistical monitor-
ing approach that employs Bayesian
hypothesis testing [13, 21, 36]. By
trading-off formal safety guarantees
with statistical guarantees, our tech-
nique has the following advantages:
i) Our method is versatile and can
handle various system types, includ-
ing non-linear and DNNs models.
This is achieved merely by leverag-
ing the knowledge of the system’s in-
put/output execution behavior (with detailed explanations provided later). In
simpler terms, our approach simply assumes that random executions (i.e., tra-
jectories) of the system can be generated from a specified initial state. We refer
to this representation as I/O execution. ii) The user can adjust the confidence
level needed for the analysis based on the specific use case. For example, in a
safety critical scenario, a high confidence level (e.g., 0.99) may be chosen, while
in less critical situations, a lower confidence level can be selected. Our method
requires less time for monitoring as the desired confidence level decreases. iii) If
the I/O execution is computationally efficient for a given system model, this
method scales well even when the system model is complex.

Our approach is illustrated in Fig. 1. After the system completes its real-world
operation, it produces a log that comprises of both noisy and missing records.
The noise in the log may result from sensor uncertainties, while missing records
could be attributed to transmission losses over a shared network or the system’s
energy-saving policies (especially in intermittently powered devices). The task
of monitoring is to analyze this log for possible safety violations. Once the inputs
are received (I/O execution model, log, safety condition), the proposed approach
performs a series of steps to analyze the log for safety violation. Before discussing
the steps of the proposed approach, it is worth recalling that our approach
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is statistical, and as such, the assurances it offers are inherently probabilistic.
Specifically, if the approach identifies a trajectory breaching the safety condition,
it is reported as a counterexample. Upon discovering such a counterexample,
the intrinsic nature of our method ensures that it is concrete—meaning it is a
real execution of the actual system, reconstructed from the available logs, that
indeed violates the safety condition. Consequently, the system is confirmed to
be unsafe. However, if no violating trajectory is found, it infers that the system
is safe with probabilistic guarantees. The key challenge in monitoring a given
uncertain system log with missing records lies in efficiently recreating the missing
records from the available noisy records of the log. In essence, recreating missing
records amounts to generating complete trajectories (i.e., records available at
all time steps) of the system from the given log. These recreated trajectories
are regarded as a valid recreation of the behavior of the system from the given
log. As the available records of the given log are noisy (i.e., not reduced to a
point), there could be an infinite number of potential trajectories that can be
recreated from the available records of the given log. That is, any trajectory of
the system that passes through (i.e., intersects) all the available noisy records
of the log, is considered a valid recreation of the behavior of the system from
the given log. We refer to such a trajectory as a valid sample trajectory (or
simply a valid trajectory) w.r.t. the given log (formally defined in Definition 3).
Recreating all possible valid trajectories from a given noisy log usually requires
reachability analysis, which often results in conservative estimates, suffers from
scalability problems, and may be completely unavailable for complex systems. In
contrast, our method overcomes this issue by trading-off formal guarantees with
statistical guarantees, and thus only requiring to check a finite number of valid
sample trajectories generated from the log. To do so, the user configures the
proposed monitoring approach by specifying the desired confidence level for the
analysis. This is typically chosen to be high, e.g., c = 0.99, where c stands for the
desired confidence. Based on the required pre-set user confidence, our method
computes the value of K, which is the number of random valid trajectories
(recreated from the records in the log) that must be checked for safety in order
to infer the system to be safe with the required confidence c. It is worth noting,
in our approach, to generate a valid trajectory (w.r.t. to the given log), we simply
proceed to generate a random trajectory of the system (from the given initial
set), and then check if it intersects with all the records in the given log (see
Fig. 1). If the trajectory intersects with every record of the log, we classify it
as one of the valid trajectories among the K valid trajectories to be checked for
safety. Otherwise, we discard it and generate a new trajectory. While checking
K random valid trajectories for safety, if a trajectory is found to be violating the
safety condition, then it is returned as concrete counterexample, and the system
is inferred as unsafe. If all the K random valid trajectories are safe, our method
guarantees the system is safe with the required the probabilistic confidence c.
An overview of the propsoed approach is given in Fig. 1.

Contributions The main contributions of this work are:
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1. An SHT (statistical hypothesis testing)-based framework, using Jefferies
Bayes factor, for monitoring (proposed in Section 4).

2. A monitoring algorithm—that leverages the SHT-based framework—to de-
tect safety violations from a given input log with noisy and missing records
(proposed in Section 5).

3. We implemented our method as prototype tool, named Posto. Further, us-
ing this tool, we evaluated the proposed algorithm on three case studies,
with two non-linear models and one DNN-based model. Our tool success-
fully monitored all the systems under 250 seconds.

Outline Section 2 reviews related works. Section 3 recalls necessary preliminaries.
Sections 4 and 5 introduce our approach, and Section 6 discusses implementation
and experiments. Section 7 outlines future works.

2 Related Work

Deterministic Monitoring Signal Temporal Logic (STL) formalizes real-valued
signal properties in dense-time contexts. In practical scenarios with continuous
dynamics and numerical parameters, simple yes/no answers are insufficient, re-
quiring quantitative satisfaction details for informed decision-making. Existing
methods like [14,18] handle complex safety specifications but often need formal
models or direct signal access, which can be overly complex or unavailable. In
addition to STL-based monitoring, recent attention has shifted towards monitor-
ing using automata-based specifications. Notably, advancements have been made
in the study of complex, quantitative extensions of automata. Techniques such
as timed pattern matching on timed regular expressions [6, 29] have emerged,
particularly in the context of deterministic offline monitoring. The concept of
model-bounded monitoring, introduced in [30], deviates from the conventional ap-
proach of monitoring a black-box system solely against a specification. Instead,
it incorporates a limited, over-approximated understanding of the system to mit-
igate false positives. The over-approximated knowledge takes the form of a linear
hybrid automaton. Model-bounded monitoring was extended in the framework
of uncertain linear systems in [15]. Unlike all these deterministic approaches,
our proposed monitoring approach does not require any formal model—and can
handle complex models such as non-linear models, DNNs etc.—of the system. It
trades off formal safety guarantees with high confidence probabilistic guarantees.

Statistical Verification Statistical verification has found extensive application
across various domains, such as [12,19,28,34] (see a survey in [23]). The method
proposed in [35] uses statistical model checking which relies on Clopper-Pearson
confidence levels (see [27]). This approach is used for verification of sample spec-
ifications in a Neural Network-based controller, captured through STL formulas.
The work in [13] also uses the Jeffries Bayes factor test but tackles a funda-
mentally different problem. While they analyze falsifying traces in cyber-physical
systems to identify input regions responsible for property violations, we apply the
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same statistical method for monitoring complex systems with noisy and missing
logs. Our goal is to detect safety violations, rather than characterize counterex-
ample neighborhoods. Further, privacy implications of statistical model checking
algorithms through the lens of differential privacy has also been explored [31].
Specifically, it focuses on sequential algorithms that draw samples until a speci-
fied condition is satisfied. It shows that disclosing the number of samples drawn
can compromise privacy and highlights the inadequacy of the standard expo-
nential mechanism in achieving differential privacy for sequential algorithms.
Statistical methods have also been applied to learn simpler models of systems,
that can offer probabilistic guarantees, using a limited number of samples. These
models, known as Probabilistic Approximately Correct (PAC) models, have been
used in various works, such as [4,11,26]. One commonly used approach for learn-
ing PAC models is through scenario optimization [10]. Additionally, techniques
based on scenario optimization have been employed to identify safe inputs for
black box systems, as discussed in [32,33].

3 Background and Problem Statement

The autonomous system under consideration evolves in discrete time in Rn,
called state space, where n is the dimension of the system. A state is x ∈ Rn.
It is worth noting that a formal model of the system is not explicitly required
to apply our proposed monitoring approach. Essentially, all that is needed is
a knowledge of the I/O execution described by fsys(x0, t, [ε]t−1) = xt, where
x0 ∈ Rn represents the initial state, xt ∈ Rn represents the system’s state at
time t, and [ε]t−1 = {ε0, ε1, . . . , εt−1} is a set of environmental inputs (i.e., dis-
turbances experienced) to the system up to time t where ∀iεi ∈ Rn. In simpler
terms, fsys(x0, t, [ε]t−1) represents the behavior of the system from an initial
state x0 over time t to yield the state xt, with environmental inputs [ε]t−1. The
benefit of this formulation lies in its agnosticism towards the specific details
of the system’s internal workings. The proposed monitoring approach operates
effectively as long as the output state xt can be generated from the given in-
put parameters (x0, t, [ε]t−1). No constraints are imposed on the nature of the
discrete-time system model; it can be non-linear, utilize DNNs, or exhibit various
other characteristics. This flexibility in accommodating diverse system models
underscores the versatility of the proposed method. In other words, this allows
for our method to be applied on a wide range of autonomous systems, making it
a suitable approach for handling complex and diverse scenarios where detailed
knowledge of the internal system dynamics may not be readily accessible. In our
experiments, we evaluated our proposed approach on both non-linear models
and a model employing a DNN-based controller, all of which was successfully
monitored under 250 s.

Definition 1 (Reachable Set). We overload the function fsys(·) to take set
values as follows. Given an initial set θ0, and environmental inputs [O]t−1 =
{o1, o2, · · · , ot−1}, the reachable set at time step t is given as θt. Formally, the
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I/O execution of the system is given as follows: fsys(θ0, t, [O]t−1) = θt; where
θ0, θt ⊂ Rn, and ∀i∈[0,t−1]oi ⊂ Rn.

Definition 2 (Log). Given a system I/O execution model as in Definition 1,
a finite size (uncertain) log of the system is defined as follows: ` = {(θ̂t, t) | θt ⊆
θ̂t, t ≤ H}, where H ∈ N is a given time bound.

Properties and notations for logs Each tuple (θ̂t, t) is called a record. It is worth
noting that the records are not necessarily reduced to a point. The size of the
log `, indicating the number of records it contains, is denoted by |`|. In a log
`, the k-th record is denoted as `k = (θ̂tk , tk), where θ̂tk over-approximates the
system’s state at time step tk. It is worth highlighting that the size of a log may
not necessarily be equal to H, but rather, |`| ≤ H. In other words, the logs are
considered scattered, implying that they may not contain a record for every t in
the range of 1, . . . ,H. We assume that each record of the log contains the true
state of the system at a given time step, i.e., it is an over-approximation of the
system’s state. In practical scenarios, this assumption is generally valid. Physical
sensors, as employed in applications like medical devices and cars, record values
within an acceptable margin of error, providing a range of values that encompass
the actual state.

Definition 3 (Valid Trajectory). A trajectory τ of the system is an ordered
sequence of states given as follows: τ = {x0, x1, · · · , xH}; where ∀t∈[0,H]

fsys(x0, t, [ε]t−1) = xt. A trajectory τ = {x0, x1, · · · , xH} is said to be valid
w.r.t. a given log ` = {(θ̂t, t) | θt ⊆ θ̂t, t ≤ H} (of the same system) if:
∀(θ̂t,t)∈` xt ∈ θ̂t.

In other words, a valid trajectory is a valid “recreation” of the behavior of the
system from the given uncertain log.

Definition 4 (Random Trajectory). Given a log `, let τ̄val denote the set of
all valid trajectories of the system w.r.t. `, with environmental inputs [O]H (see
Definition 3). We assume that the trajectories τ ∈ τ̄val are distributed according
to a given probability distribution D. Let a trajectory τ be randomly chosen from
the set of all valid trajectories τ̄val (w.r.t. to ` and environmental inputs [O]H).
This is randomly drawn according to the distribution D, and formally expressed
as τ = Sample(fsys(·), `, [O]H ,D).

For all our experiments, we assume D to be a uniform distribution. However,
our method is compatible with any distribution D provided that an implemen-
tation of Sample(·) is available.

We aim here at performing safety monitoring of systems, from an uncertain
log, utilizing an I/O execution model.

Problem 1. Inputs:

1. the system I/O execution model fsys(·);
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2. an uncertain log ` = {(θ̂t, t) | θt ⊆ θ̂t, t ≤ H};
3. environmental inputs [O]H ;
4. the probability distribution D followed by the set of valid trajectories;
5. an unsafe set U ; and
6. a confidence c ∈ (0, 1) desired on the required safety verification.

Problem: perform monitoring to ensure safety of the system with confidence c
as defined by Jefferies Bayes factor based SHT.

4 SHT for Probabilistic Monitoring

In this section, we outline the statistical framework using Jeffries Bayes factor
for hypothesis testing. The goal is to derive the value of K, representing the
number of valid trajectories. These trajectories must be examined for safety to
confirm that the system meets the required guarantee c. Let us first provide
a brief overview of SHT. Our SHT framework formulates two hypotheses: the
null hypothesis H0 and the alternate hypothesis H1. These hypotheses aim to
determine if the system violated the safety condition based on the provided log.
The null hypothesis H0 asserts that a randomly chosen valid trajectory is safe
(i.e., it does not intersect with the unsafe set), with a probability of at most c.
On the other hand, the alternate hypothesis H1 asserts that a randomly chosen
valid trajectory is safe with a probability of at least c. After formulating the
hypotheses, we collect evidence through random sampling of a finite number of
valid trajectories. The algorithm concludes when enough evidence is gathered
to validate either hypothesis (H0 or H1). The supported hypothesis, determined
by observed random samples, is accepted, while the opposing one is rejected.
Subsequently, we employ a Bayesian hypothesis test to make a decision between
these two hypotheses [21]. An important consequence of our test is, when the
samples we have drawn do not support the alternate hypothesis, they will con-
tain a counterexample (also a valid trajectory) that violates safety. Within our
statistical hypothesis framework, we not only incorporate the probabilistic guar-
antee c but also set bounds for the so called type I and type II errors. The type I
error denotes the likelihood of incorrectly concluding the alternate hypothesis
when, in reality, the null hypothesis is true. Similarly, the type II error denotes
the probability of incorrectly concluding the null hypothesis when in reality the
alternate hypothesis holds. We choose the relevant parameters such that the
type I error is kept significantly low (as desired). Type II error, which refers to
the probability of incorrectly selecting the null hypothesis when the alternative
hypothesis is true, is not relevant in our setting. This is because we never select
the null hypothesis, which would claim the system is safe with a probability less
than c. Instead, we only conclude that the system is probabilistically safe when
the alternative hypothesis is selected, which asserts that the system is safe with
probability is greater than or equal to c. If the alternative hypothesis is rejected,
we provide a concrete counterexample. Thus, type II error does not apply in
this context. Next, we describe how the hypothesis test is carried for a given



8 B. Ghosh and É. André

value of c ∈ (0, 1). We use Bayesian hypothesis testing based on Jefferies Bayes
factor [13]. Accordingly, we first formulate the null and alternate hypotheses:

H0 : Prob [fsys(·), `,D,U ] < c, (1) H1 : Prob [fsys(·), `,D,U ] ≥ c. (2)

Here, Prob [fsys(·), `,D,U ] denotes the probability that a randomly drawn
valid trajectory is safe. In other words, it represents the probability that a given
random trajectory τ (of the system fsys(·)), that is valid w.r.t. the log ` does not
intersect with the unsafe set U . Our goal is to determine if the alternate hypothe-
sis is accepted with the given parameters. We begin by setting a sufficiently high
value (say 105) for the Bayes factor B, a term we will define shortly [16]. Using
this Bayes factor B and the probability c, we compute K, the number of valid
trajectories needed to decide between the null and alternate hypotheses. Next,
we draw K samples X = {τ1, τ2, . . . , τK} according to the given distribution D
over the set of all valid trajectories. That is, for each i, τi is randomly selected
as follows: τi = Sample(fsys(·), `, [O]H ,D). Then, we check if each member of X
does not intersect with the unsafe set U , i.e., ∀iτi ∩ U = ∅. If this is true for
every trajectory, we accept the alternate hypothesis, concluding that the system
is (probabilistically) safe. If not—there is at least one trajectory that violates
safety—we consider the first such trajectory as a counterexample, i.e., τj∩U 6= ∅.
This counterexample is then returned as a result, leading to the conclusion that
the system is unsafe.

Now, we will present the connection between the Bayes factor B, confidence c,
and the number of valid trajectories to be generated, denoted as K. Consider
X = {τ1, τ2, . . . , τK} as a set of randomly selected valid trajectories, all of which
are deemed safe. The probability that all these trajectories are safe, assuming
the null hypothesis, is expressed as (similar to the treatment in [13]):

Pr [∀τ ∈ X : τ ∩ U = ∅ |H0] =

∫ c

0

qK dq. (3)

Similarly, the probability that all the trajectories are safe, given the alternate
hypothesis, is expressed as:

Pr [∀τ ∈ X : τ ∩ U = ∅ |H1] =

∫ 1

c

qK dq. (4)

The Bayes factor is the ratio of the above two probabilities:

Pr [∀τ ∈ X : τ ∩ U = ∅ |H1]

Pr [∀τ ∈ X : τ ∩ U = ∅ |H0]
=

1− cK+1

cK+1
(5)

The Bayes factor serves as a measure of the strength of evidence supporting
the alternate hypothesis in comparison to the null hypothesis. In Jeffries Bayes
factor test, we ensure that the ratio calculated in Eq. (5) exceeds the Bayes
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Algorithm 1: Proposed Statistical Monitoring
input : fsys(·), `, [O]H , D, U , c
output : Return probabilistic-safe (resp. unsafe) if the system behavior is

probabilistically safe (resp. unsafe with a counterexample).
/* fsys(): System input/output execution (see Definition 1); */
/* `: Uncertain log (see Definition 2); */
/* [O]H: Environmental inputs experienced by the system up to time H; */
/* D: Probability distribution followed by the set of all valid trajectories (see

Definition 4); */
/* U: Unsafe set; */

/* c: Required probabilistic confidence (see Section 4); */

1 K ← Compute using Eq. (6) with given c;
2 for k ∈ [1,K] do
3 τ ← Sample(fsys(·), `, [O]H ,D) ; // generate a random valid trajectory

4 if τ ∩ U 6= ∅ // check if trajectory is unsafe

5 then
6 return (unsafe,τ);

7 return probabilistic-safe;

factor B specified by the user. Hence, a sufficiently high Bayes factor value indi-
cates that the evidence favors the alternate hypothesis over the null hypothesis.
We note that, for the sake of clarity in presentation, we do not treat it as an
input to our method, but rather assume that it is preset by the user. However,
Bayes factor is indeed a parameter chosen by the user. With B given, we can
now compute the required number of samples K in the following manner:

1− cK+1

cK+1
> B ⇐⇒ K > − logc(B + 1) (6)

We conclude this subsection by bounding type I error, i.e., where the alternate
hypothesis accepted but in reality the null hypothesis is true. According to [13],
the type I error rate is bounded by: err(B, c) = c/(c+ (1− c)B). The detailed
steps of our monitoring procedure are discussed in Section 5. We note that while,
in theory, one can explore other hypothesis testing methods (including sequential
hypothesis testing), this framework (using Jeffries Bayes factor) offers several
advantages [16], notably: 1) ability to work with any distribution D; and 2) the
value of K can be pre-computed and is independent of the sample size, etc.

5 Methodology

The structure of our algorithm is in Fig. 1. The formalization of the main algo-
rithm is presented in Algorithm 1. Let us discuss its primary components:

Computing K. We use the formula specified in Eq. (6) to calculate the value
of K based on the provided c in line 1.

Checking safety of K random valid trajectories. Within the for loop in line 2,
we generate K random valid trajectories and check its safety.
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Generate a random valid trajectory. In line 3, a random valid trajectory
τ = {x0, x1, · · · , xH} is generated according to the distribution D (see
Definition 3).

Checking safety of τ . In line 5, we check if the trajectory τ intersects with
the unsafe set U , i.e., ∃txt ∩ U 6= ∅. If there exists such a t at which the
trajectory τ intersects with unsafe set U , we return the trajectory τ as a
counterexample, and infer the system as unsafe, in line 6. If none of the
K generated random valid trajectories are unsafe, we infer the system
as probabilistically safe (with the desired confidence c) in line 7.

Theorem 1 (Probabilistic Soundness of Algorithm 1). If Algorithm 1
infers the system as probabilistic-safe (in line 7), then the system is safe with
the required probabilistic confidence c.

The proof of Theorem 1 follows from the hypothesis testing framework dis-
cussed in Section 4. While our method (Algorithm 1) is compatible with any
distribution D provided that the implementation of Sample(·) is available, we
specifically discuss a method to implement Sample(·) tailored for a uniform dis-
tribution, named Uniform Sampling. This adaptation is made because, for
our experiments, we assume that D is a uniform distribution. This is incorpo-
rated into Fig. 1, providing an integrated overview of the proposed monitoring
approach (see also Algorithm 1). Given a log ` = {(θ̂t, t)} and environmen-
tal inputs [O]H = {o1, o2, · · · , oH}, where ∀t∈[0,H] θ̂t, ot ⊂ Rn, the Uniform
Sampling algorithm proceeds as follows:

Selecting the initial set. The initial log record, denoted as `0 = (θ̂0, t = 0), is
considered to be the starting point for monitoring, assuming this occurs at
time step t = 0. Consequently, θ̂0 is presumed to be the over-approximated
initial set of the system, serving as the starting point for monitoring.

Generating a random trajectory. The first step in generating a random valid tra-
jectory, is to generate a trajectory of the system (not necessarily valid yet)
from the given initial set θ̂0 and environmental inputs [O]H . To do so, we
first sample a state x0(∈ Rn) uniformly at random from the initial set θ̂0.
Next, we sample the environmental inputs [ε]H = {ε0, ε1, · · · , εH}, such
that, for all t ∈ [0, H] εt(∈ Rn) is drawn uniformly at random from the
set ot. Once the initial state x0 and the environmental inputs [ε] are sam-
pled, we compute the trajectory as follows: τ = {x0, x1, · · · , xH}, where
∀t∈[0,H] xt = fsys(x0, [ε]t−1, t).

Check if τ is valid. A trajectory is considered valid when it meets the conditions
outlined in Definition 3. In order for τ to be valid, all the records in ` must
intersect with the points in τ at their respective time steps. Encountering a
record in ` that fails to intersect with τ at a given time step implies that the
trajectory τ was not observed during the real execution of the system.

Discussion Our technique is applicable whenever the I/O execution of a system
is available, which is a reasonable assumption in most cases. When designing
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autonomous systems, models are often created within a framework or simula-
tions, which are also used for testing and performance evaluation. Additionally,
the bounds on the initial set and environmental inputs, along with their cor-
responding probabilistic distributions, are typically known. In practice, these
distributions are usually uniform or concentrated around a central value. This
makes it reasonable to assume that the I/O execution model and the probabilis-
tic distributions of trajectories are known in most real-world scenarios.

6 Case Studies

We illustrate the effectiveness and practicality of our method through its appli-
cation to three benchmarks. The first two benchmarks involve non-linear mod-
els with added environmental uncertainties (namely jet model and van der Pol
Oscillator discussed in Sections 6.1 and 6.2 respectively), while the third bench-
mark incorporates a DNN-based controller (namely mountain car discussed in
Section 6.2). We implemented the proposed statistical monitoring approach (Al-
gorithm 1) as a prototype tool developed in Python, named Posto4,5.

Input/Output Execution Model We recall that our monitoring approach requires
only the I/O execution of the system, which is capable of generating output
trajectories from the inputs (and not a detailed formal model). In our experi-
ments, we simulated such an execution behavior using the known system formal
models (without the need to explicitly provide them as input to our monitoring
approach) while incorporating additional uncertainties.

Generating Logs We simulate a trajectory according to Uniform Sampling,
by randomly selecting an initial state from the initial set and a set of environ-
mental inputs. Following the generation of this trajectory, we simulate logging
on it, as per specified probability p. In essence, at each time step along the tra-
jectory, we gather a record with a probability of p. After collecting these records,
we introduce random uncertainty δlog to each record, replicating sensor noise in
the system. In the end, we get an uncertain log as in Definition 2.

Implementation details Next, we highlight certain implementation details of our
proposed statistical monitoring approach (Algorithm 1): i) We set the value of
B = 105 as a default in our implementation. Unless otherwise stated, for all
our experiments, we use c = 0.99. ii) Since we assume a uniform distribution of
valid trajectories (Definition 4), we implemented the Sample(·) method (in line 3
of Algorithm 1) according to Uniform Sampling. However, our proposed
approach can work with any distribution.

4The code, binaries, models, and scripts for stochastic result recreation are open-sourced on
GitHub https://github.com/bineet-coderep/posto.

5Experiments were performed on a Lenovo ThinkPad with i7-8750H CPU with 2.20 GHz and
32GiB memory on Ubuntu 20.04 LTS (64 bit).

https://github.com/bineet-coderep/posto


12 B. Ghosh and É. André

Research Questions (RQ) We consider the following research questions in our
case studies:

1. The impact of varying the logging probability p (i.e., the number of records
in the log) on the frequency of discovering a counterexample or inferring the
system as probabilistically safe.

2. The impact of varying the amount of uncertainties δlog in the log records
(i.e., the volume of records in the log) on the frequency of discovering a
counterexample or inferring the system as probabilistically safe.

3. Impact of varying the probabilistic confidence c.
4. In the Uniform Sampling algorithm, the effect of various parameters

(logging probability and the amount of uncertainty present in the log records)
on the chances of identifying valid trajectories.

6.1 Jet Model

System Description The dynamics of the jet model we employed to simulate
the I/O execution corresponds with a Moore-Greitzer model of a jet engine
with a stabilizing feedback control while operating in the no-stall mode [5].
We discretized the system with additional environmental uncertainties (inputs),
εx, εy, on states x and y respectively. In this model, the origin is translated
to a desired no-stall equilibrium. The state variables correspond to x = X − 1,
y = Y − Yco − 2, where X is the mass flow, Y is the pressure rise and Yco is a
constant.

Safety The system is considered safe if the mass flow of the jet model is main-
tained at all time steps as follows: x ≥ −0.10. Imagine a crash scenario where
the only available data for analysis is the log recorded by the jet prior to the
crash. Conducting an analysis with our monitoring algorithm can be beneficial
for investigating agencies, manufacturers, and others. It enables the detection
of safety condition violations during the jet’s execution and the identification of
trajectories that breached safety conditions.

Experiments The initial set and the environmental inputs considered for this
example are as follows: x ∈ [0.8, 1], y ∈ [0.8, 1], εx, εy ∈ [0, 0.002] (see [1] for
initial sets). Some random trajectories of the system are shown in Fig. 2a. In
Fig. 3, the plots in the bottom row (Figs. 3c and 3d) and upper row (Figs. 3a
and 3b) have logging probabilities (p) of 3% and 5% respectively. Additionally,
the logs in the left column (Figs. 3a and 3c) and right column (Figs. 3b and 3d)
have log uncertainty (δlog) values of 0.02 and 0.04 respectively. We also conduct
an analysis of our monitoring algorithm using logging probabilities (p) set at
7%, 9%, and 11%, each with a log uncertainty value of δlog = 0.02. Due to the
similarity of the plots to those in Fig. 3, we have omitted them from the paper.
For Figs. 2b and 2c, log uncertainty was set to δlog = 0.02. We now answer
RQs (1)-(4), using Figs. 2b, 2c and 3.
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Fig. 2: Jet Model Case Study. Random Trajectories (Fig. 2a). x- and y- axis represents state
variables, and z-axis represents time step. Impact of Logging Probability on Generation of Valid
Trajectories (Fig. 2b). We illustrate how varying the logging probability affects the monitoring
execution time (Algorithm 1) and the percentage of valid trajectories out of the total number of
generated trajectories. Impact of Probabilistic confidence c (Fig. 2c). We illustrate the impact of
logging probability on the time taken to perform monitoring (Algorithm 1) and safety inferences.
The red dot denotes an instance where the system was inferred to be unsafe with a counterexample,
and green dots denote instances where the system was inferred to be probabilistically safe (with the
corresponding confidence value indicated in the x-axis.

Answer to RQ 1 (impact of logging probability p) We address this by comparing
two sets of figures in Fig. 3. In the left column, with a smaller record size, Fig. 3c
took 17.26 s to conclude that the system is probabilistically safe. Increasing the
probability of logging (i.e., incorporating more records) as shown in Fig. 3a, also
inferred the system to be probabilistically safe. However, the inference of safety
took longer, requiring 26.07 s. This increase in monitoring time will be discussed
in detail in RQ 4. In the right column, with larger record size, the analysis in
Fig. 3d concluded in 0.51 s, determining the system behavior as unsafe and gen-
erating a counterexample (dotted red trajectory). The behavior of the system in
Fig. 3b, with a logging probability of 5%, resulted in inferring the system behav-
ior as unsafe, as three records in the input log were unsafe. In this case, the main
statistical monitoring process did not initiate; instead, it concluded by merely
verifying the safety of the logs, and this process took 0.006 s. We additionally
assess the influence of logging probability through Fig. 2b. We further incremen-
tally increase the logging probability to 7%, 9%, and 11%. In each of these cases,
although the conclusion about the system being probabilistically safe remained
consistent, the duration for performing the monitoring varied: 47.5 s, 90.88 s,
and 226.43 s, respectively. Fig. 2b further illustrates how the time required for
monitoring increases quite noticeably with the increase in logging probability.

Answer to RQ 2 (impact of log uncertainty δlog) We address this question by
comparing two sets of figures in Fig. 3. In the bottom row, with a smaller logging
probability: Increasing the uncertainty in the log leads to a change in the infer-
ence from safe (Fig. 3c) to unsafe with a counterexample (Fig. 3d). Similarly,
in the top row (with higher logging probability): Increasing the uncertainty in
the log results in rendering some of the log records unsafe, leading to the system
being inferred as unsafe (Fig. 3b).
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Fig. 3: Statistical Monitoring. Evolution of the state—x for the jet model—with time. The
volume of the records increases from left to right, and the probability of logging increases from
bottom to top. The colored trajectories are the generated random valid trajectories during the
process of monitoring, the dotted trajectory in red is an unsafe trajectory discovered during the
process of monitoring (see Fig. 3d), the black regions are records in the log given as an input to the
monitoring algorithm, and the dark-brown regions are unsafe-records in the log (Fig. 3b). The red
dotted line represents the safe range for the variable.

Answer to RQ 3 (impact of probabilistic confidence c) We address this ques-
tion by using Fig. 2c. By varying the probabilistic confidence c through
0.6, 0.7, 0.8, 0.9 and 0.99, we witness a drastic increase in the time taken by
the monitoring approach: 0.85 s, 0.85 s, 1.66 s, 3.31 s and 0.42 s respectively. This
is natural, as the value K (i.e., number of valid trajectories) required to infer
the system as safe, with the respective confidence c, also increases drastically
as per Eq. (6). Also, note that increasing the value c increases the chances of
finding a counterexample that violates safety. The plot illustrates this trend,
demonstrating that although no counterexamples were discovered at c values of
0.6, 0.7, and 0.8, a counterexample violating the system’s safety was discovered
when c = 0.99.

Answer to RQ 4 (chances of finding valid trajectories) We investigate this ques-
tion by using Fig. 2b. When we increase the logging probability (p), even with
the same level of confidence (c), it takes more time to perform monitoring. To
put it simply, even if the number of valid trajectories needed to infer the sys-
tem’s safety (as defined by c) stays the same, increasing the number of records
in the log (due to an increase in the value of p) results in a longer monitoring
time. This behavior results from the implementation, which involves generating
random valid trajectories based on a uniform distribution, as outlined in Uni-
form Sampling. To elaborate, when we increase the logging probability p
by increments of 3%, 5%, 7%, 9%, and 11%, the proportion of valid trajectories
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among all randomly generated trajectories is observed to be 31.08%, 21.3%,
11.9%, 7.26%, and 2.71%, respectively.

6.2 Other Benchmarks and General Observations

Let us briefly discuss the other two case studies (namely van der Pol and moun-
tain car). Given the similar trends observed in these two case studies with re-
spect to RQs (1)-(4), and further owing to space limitations, we cumulate the
observations from all the experiments and discuss them in detail here as general
observations. The details of the mountain car model are discussed next, while
the van der Pol oscillator model is presented in Section 6.2, due to its similarity
to the previously discussed jet model (Section 6.1) and space limitations.

Mountain Car We now evaluate our proposed approach on a mountain car
model with a DNN-based controller. Given the complexity of a DNN-based con-
troller and the increasing deployment of such controllers in safety-critical scenar-
ios, it is important to scalably investigate such systems in the event of a crash.
This helps us to determine the cause of the crash and identify the trajectory
that violated safety by analyzing the system’s log. Thus, making this model an
ideal candidate to evaluate our monitoring approach.

System Description We consider a scenario where an under-powered car needs
to climb a steep hill. Because the car lacks sufficient power to directly go up
the hill, it has to drive up the hill in the opposite direction first to build up
enough momentum to reach its destination. The DNN-based controller fDNN (·)
uses the car’s position (p) and velocity (v) as inputs and provide an acceleration
command as output (refer to [17] for the discrete time dynamics).

Experiments The system is considered safe if the velocity of mountain car is
maintained at all time steps as follows: v ≤ 0.055. The initial set considered
for this example are as follows: p ∈ [−1.2,−1], v ∈ [−0.07, 0.07] (see [17]). To
assess our monitoring approach in this case study, we conducted four distinct
analyses, categorized into two sets (similar to the other case studies): one in-
volving varying logging probabilities p (20% and 40%), and the other involving
varying log uncertainties δlog (0.004 and 0.008). As the observed plots closely
resemble those depicted in Figs. 3 and 4, we have not included them here. We
additionally conducted analysis using c values of 0.7, 0.7, 0.8, and 0.99, while
keeping δlog = 0.004. We have not included the corresponding plot since it closely
resembles Fig. 2c.

Van der Pol Oscillator In this case study, the dynamics of the van der Pol
model (as in [2]) was discretized with additional environmental uncertainties
(εx, εy, εµ) to simulate the I/O execution. Here, the state variables x and y rep-
resent position and velocity, respectively, while µ denotes the damping strength
that remains constant in the system.
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Fig. 4: Van der Pol Oscillator Monitoring. Evolution of the state—y for the Van der Pol
model—with time. The volume of the records increases from left to right, and the probability of
logging increases from bottom to top. The colored trajectories are the generated random valid tra-
jectories during the process of monitoring, the dotted trajectory in red is an unsafe trajectory dis-
covered during the process of monitoring (see Fig. 4d), the black regions are records in the log given
as an input to the monitoring algorithm, and the dark-brown regions are unsafe-records in the log
(Fig. 4b). The red dotted line represents the safe range for the variable.

Experiments The system is considered safe if the velocity is maintained at all
time steps as follows: y ≤ 2.78. The initial set and the environmental inputs
considered for this example are as follows: x ∈ [1.25, 1.45], y ∈ [2.25, 2.35], εx, εy ∈
[0, 0.004], εµ ∈ [0, 0.01] (see [1, 2] for initial sets). The illustration of random
trajectories of this system is omitted as it is similar in essence to that of the
jet model. In Fig. 4, the plots in the bottom row (Figs. 4c and 4d) and upper
row (Figs. 4a and 4b) have logging probabilities (p) of 1% and 3% respectively.
Additionally, the logs in the left column (Figs. 4a and 4c) and right column
(Figs. 4b and 4d) have log uncertainty (δlog) values of 0.2 and 0.4 respectively.
We additionally conducted analysis using c values of 0.6, 0.7, 0.8, and 0.99, while
keeping δlog = 0.2. We omit the plot as it similar to Fig. 2c.

General Observations

Answer to RQ 1 As evidenced across nearly all three benchmarks (with the
exception of a single sub case in van der Pol), increasing the logging probability
shows no significant effect on the inference of system’s safety by the proposed
monitoring approach. However, there is a noticeable increase in the computa-
tional time required for the monitoring algorithm as the logging probability
increases. This can primarily be attributed to the decreasing chances of discov-
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ering valid trajectories with higher logging probabilities, which will be elaborated
in RQ 4.

Answer to RQ 2 As observed in the first two benchmarks, increasing the uncer-
tainty in the log, increases the chances of discovering a counterexample (while
the third benchmark remained probabilistically safe in all cases). With an in-
crease in log uncertainty, we observed noticeable decrease in monitoring time in
some sub-cases. This could again be attributed to increasing chances of finding
valid trajectories with an increase in log uncertainties. See RQ 4.

Answer to RQ 3 Increasing the probabilistic confidence increases the chances
of finding a counterexample that violates safety, and also the compute time by
the monitoring algorithm increases. This outcome is to be expected, given that
the value of K (i.e., number of valid trajectories) required to infer the system as
safe, with the respective confidence c, also increases drastically as per Eq. (6).
Specifically, for c values of 0.6, 0.7, 0.8, 0.9, and 0.99, the computed values of K
are 23, 33, 52, 110, and 1146, respectively.

Answer to RQ 4 As observed in several of the cases across the three bench-
marks, the chances of finding valid trajectories increases with: i) decrease in log-
ging probability p, and ii) increase in log uncertainty δlog. This behavior arises
from how random valid trajectories are generated in Uniform Sampling.
Nevertheless, it is worth noting that across all our benchmarks (including all
subcases), which includes nonlinear and DNN-based controllers, the monitoring
was completed within 250 s on a standard laptop.

7 Conclusion and Perspectives

This work opts to trade-off formal safety guarantees with high-confidence prob-
abilistic assurances to ensure trustworthy monitoring suitable for most practical
applications. To this end, we propose an SHT-based framework for monitoring
to detect safety violations from an input log with noisy and missing records.
Our implementation into a prototype tool Posto showed that we can success-
fully monitor non-linear and DNN based benchmarks under 250 seconds. Given
the scalability of our method and the observations it offer, this work paves the
way for several future research directions. Our ultimate aim is to adopt a fully
representation-free strategy, where the I/O execution representation will be co-
designed with the monitoring approach. The goal of this synergy is to mutually
enhance both the I/O execution representation and the monitoring process, to
achieve a better scalability for complex models and are tuned towards finding
counterexamples faster.
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