
Safety-Aware Flexible Schedule Synthesis for Cyber-Physical
Systems using Weakly-Hard Constraints

Shengjie Xu, Bineet Ghosh, Clara Hobbs, P. S. Thiagarajan, and Samarjit Chakraborty

Department of Computer Science, The University of North Carolina (UNC) at Chapel Hill, USA

ABSTRACT
With the emergence of complex autonomous systems, multiple

control tasks are increasingly being implemented on shared compu-

tational platforms. Due to the resource-constrained nature of such

platforms in domains such as automotive, scheduling all the control

tasks in a timely manner is often difficult. The usual requirement—

that all task invocations must meet their deadlines—stems from

the isolated design of a control strategy and its implementation

(including scheduling) in software. This separation of concerns,

where the control designer sets the deadlines, and the embedded

software engineer aims to meet them, eases the design and verifica-

tion process. However, it is not flexible and is overly conservative.

In this paper, we show how to capture the deadline miss patterns

under which the safety properties of the controllers will still be

satisfied. The allowed patterns of such deadline misses may be cap-

tured using what are referred to as “weakly-hard constraints.” But

scheduling tasks under these weakly-hard constraints is non-trivial

since common scheduling policies like fixed-priority or earliest

deadline first do not satisfy them in general. The main contribu-

tion of this paper is to automatically synthesize schedules from the

safety properties of controllers. Using real examples, we demon-

strate the effectiveness of this strategy and illustrate that traditional

notions of schedulability, e.g., utility ratios, are not applicable when
scheduling controllers to satisfy safety properties.

ACM Reference Format:
Shengjie Xu, Bineet Ghosh, Clara Hobbs, P. S. Thiagarajan, and Samarjit

Chakraborty. 2023. Safety-Aware Flexible Schedule Synthesis for Cyber-

Physical Systems using Weakly-Hard Constraints. In 28th Asia and South
Pacific Design Automation Conference (ASPDAC ’23), January 16–19, 2023,
Tokyo, Japan. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/

3566097.3567848

1 INTRODUCTION
The core functionalities of many emerging autonomous systems,

like autonomous vehicles or robots, are implemented as a collection

of feedback control loops. Their design starts with mathematically

determining a control strategy, followed by implementing that

strategy in software [14]. The former belongs to the domain of

Thiagarajan is also affiliated with the Chennai Mathematical Institute, India. This work

was supported by the NSF grant #2038960.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan
© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-9783-4/23/01. . . $15.00

https://doi.org/10.1145/3566097.3567848

Schedule
Synthesis

Constraint
Synthesis

Safe
Weakly-Hard
Constraints

Scheduler
Automaton

Safe
Schedule

Constraint
Synthesis

Safe
Weakly-Hard
Constraints

No Safe
Schedule

Plant 1 with
Safety Margin 1

Plant N with
Safety Margin N

Figure 1: Outline of the proposed scheme.

control theory and the latter to real-time and embedded systems.

In this process, the control engineers assume certain deadlines that

the control tasks need to satisfy for them to behave as desired,

and the embedded systems engineers schedule them to meet those

deadlines [16]. While this ensures a clean separation of concerns,

allowing the two groups of engineers to work independently, this

process is inflexible and overly conservative. It is posing a problem

as the volume of software in autonomous systems continues to grow

and multiple control tasks now need to be scheduled on shared

resources [3, 25]. Meeting all deadlines requires making pessimistic

decisions because of many reasons [7], such as the difficulty in

estimating the worst-case execution times (WCET) of tasks [1].

Here, we show that instead of attempting to meet all deadlines,

if the focus is shifted to a “system-level” property like control

safety, then certain deadlines can be missed while still satisfying

this property. Which deadline hit/miss patterns are acceptable has

recently been actively studied from a control stability perspec-

tive [13, 15, 21, 22, 26, 28], which may be seen as a form of safety
property. Other more general safety properties such as the max-

imum deviation from a nominal behavior have also been stud-

ied [5, 10]. While these papers have studied the deadline hit/miss

patterns that guarantee the satisfaction of a given safety property,

it is not clear how to schedule a given set of tasks such that each task

respects its corresponding deadline hit/miss pattern. In the absence

of such a scheduling policy it is not possible to exploit the flexibility

that arises from the fact that deadline misses can be tolerated.

The main contribution of this paper is a technique for auto-

matically synthesizing such schedules from a collection of feedback

controllers and their associated safety properties. Instead of the

safety property being stability—where our proposed technique may

also be applied—we focus on a more general safety property de-

fined by the maximum deviation from a nominal behavior. Given an

initial state of the system (plant + controller) we define the nominal

behavior as the trajectory in the state space where all the controller

inputs meet their deadlines (i.e., all the feedback control inputs

are applied before the end of the sampling period). If some of the

control inputs cannot be computed (and hence applied) within the

sampling period (i.e., there is a deadline miss) then the trajectory

followed by the system will deviate from this nominal trajectory.

As long as the deviation is not more than a specified bound, the

https://doi.org/10.1145/3566097.3567848
https://doi.org/10.1145/3566097.3567848
https://doi.org/10.1145/3566097.3567848

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Shengjie Xu, Bineet Ghosh, Clara Hobbs, P. S. Thiagarajan, and Samarjit Chakraborty

behavior of the system is deemed to be safe. This notion of safe

behaviors is a natural one. For instance, the nominal trajectory

might represent the pre-determined path that an autonomous ve-

hicle should follow and safe behaviors will denote the paths the

vehicle can take, without hitting any obstacles.

Our proposed schedule synthesis scheme is illustrated in Fig-

ure 1. Given a plant + controller and a desired safety property (i.e.,
the maximum allowed deviation from its nominal behavior), we

first derive the pattern of allowed deadline hits and misses. This is

captured as a weakly-hard constraint
(𝑚
𝑘

)
that specifies how many

deadlines 𝑚 must be met within any window of 𝑘 consecutive

samples. Note that there could be multiple such weakly-hard con-

straints that satisfy the safety property of a controller. Given a set

of controllers and a set of weakly-hard constraints derived for each

controller, we develop an automata-theoretic technique to compute

a schedule for them. Such a schedule specifies which controllers

should be run in each period (and hence meet their deadlines) and

which cannot be run (i.e., they miss their deadlines). It is important

to note that such schedules may not be captured using standard

scheduling policies like earliest deadline first or fixed priority.

This work is broadly related to the topic of scheduling control

tasks [6], and in particular to a number of recent studies [5, 10, 15]

on checking whether a safety property (including control stability)

is satisfied for some given deadline hit/miss pattern. Here, we lever-

age those results and solve the inverse problem, viz., synthesizing
the hit/miss patterns (or weakly-hard constraints) and further use

them for schedule synthesis. As for other related work, specifi-

cations and dominance relations of weakly-hard constraints are

studied in [30], and scheduling related studies involving weakly-

hard constraints have appeared in [8, 9, 21, 27]. In [8] the problem

of scheduling multiple data streams with

(𝑚
𝑘

)
constraints using

a priority based scheme is studied with the aim of reducing the

probability of constraint violations. The work in [9] develops a tech-

nique for bounding the number of deadline misses in end-to-end

task chains that have task dependencies. The problem of verify-

ing if a

(𝑚
𝑘

)
constraint is being met in a uniprocessor setting for

constrained-deadline periodic systems is investigated in [27] and

an overapproximation scheme is presented. Finally, the authors

of [21] develop a Deadline-Miss-Aware-Controller (DMAC) which

estimates deadline misses based on probabilistic execution times

derived through simulations. The goal is to provide probabilistic

guarantees for the performance of the controller.

The rest of this paper is organized as follows. In Section 2, we in-

troduce the system model and weakly-hard constraints with which

we model the deadline hit/miss behaviors. In Section 3, we formally

define the two main problems of this work, namely constraint syn-

thesis and schedule synthesis. We then propose solutions to these

two problems in Sections 4 and 5, respectively.We evaluate our solu-

tions with a case study in Section 6. Finally, we provide concluding

remarks in Section 7.

2 SYSTEM MODELLING
2.1 The State-Space Model
Our system model is a discrete time-invariant linear dynamical

system with state feedback control. We assume it to be of the form:

𝑥 [𝑡 + 1] = 𝐴𝑥 [𝑡] + 𝐵𝑢 [𝑡], (1)

where𝐴 ∈ R𝑛×𝑛 , and 𝐵 ∈ R𝑛×𝑝 . The control input𝑢 is computed

by a periodic real-time task running on a processor, and is assumed

to be of the form:

𝑢 [𝑡] = 𝐾𝑥 [𝑡 − 1], (2)

where 𝐾 ∈ R𝑝×𝑛 . We assume that the new control input is al-

ways applied at the deadline of the control job, and the deadline

is assumed to be one sampling period from the release time of the

job [12]. In other words, the system state at time 𝑡 − 1 is sampled

and used to compute the control input for time 𝑡 , where the state

and the control input are computed according to Eqs. (1) and (2).

2.2 Safe Behaviors
We consider the behavior of the plant only over a finite time

horizon 𝐻 . Thus the states of the plant will be recorded at time

points 0, 1, . . . , 𝐻 . We also assume the initial state of the system

is 𝑧 [0] ∈ R𝑛 . Then the nominal trajectory of the plant is the se-

quence of states of length 𝐻 of the form 𝑧 [0], 𝑧 [1] . . . , 𝑧 [𝐻], where
𝑧 [𝑡] = 𝐴𝑧 [𝑡 − 1] + 𝐵𝑢 [𝑡 − 1] and 𝑢 [𝑡] = 𝐾𝑧 [𝑡 − 1], for 0 < 𝑡 ≤ 𝐻 .
Intuitively, it is the trajectory that results when there are no dead-

line misses. We next wish to define the set of behaviors that can

be tolerated in terms of how far they can deviate from the nomi-

nal trajectory. To start with, we let T𝐻
be sequences of length 𝐻

over R𝑛 of the form 𝜏 = 𝑥 [0], 𝑥 [1] . . . , 𝑥 [𝐻] with 𝑥 [0] = 𝑧 [0]. We

use 𝜏 [𝑗] to denote the 𝑗-th member of the sequence, i.e., 𝜏 [𝑗] = 𝑥 [𝑗].
Since 𝐻 will be clear from the context we shall write T instead

of T𝐻
in what follows. Intuitively, T denotes the set of all possi-

ble trajectories of length 𝐻 in the state space that start from 𝑧 [0].
Clearly the nominal trajectory, denoted from now on as 𝜏nom, is

a member of T . To quantify deviations from the nominal trajec-

tory, we use the Euclidean distance, denoted dis(·) to measure the

distance between two points in R𝑛 . In other words, for 𝑥,𝑦 ∈ R𝑛 ,
dis(𝑥,𝑦) = (∑𝑛

𝑖=1 (𝑥𝑖 − 𝑦𝑖)2)1/2, where 𝑥𝑖 and 𝑦𝑖 denote the 𝑖-th

element of the vector 𝑥 and 𝑦 respectively. This induces a distance

between any pair of members of T , also denoted as dis(·), given
by dis(𝜏, 𝜏 ′) = max{dis(𝜏 [𝑗], 𝜏 ′[𝑗]) | 0 ≤ 𝑗 ≤ 𝐻 }.

We now fix a maximum deviation 𝑑max > 0, a rational number

in R. This leads to the set of safe trajectories T𝑑max
safe ⊂ T , defined

as T𝑑max
safe = {𝜏 | dis(𝜏, 𝜏𝑛𝑜𝑚) ≤ 𝑑max }. We shall from now on

write Tsafe instead of T𝑑max
safe since 𝑑max will be clear from context.

Clearly, the nominal trajectory is a member of Tsafe .

2.3 Weakly-Hard Constraints
The control input𝑢 is computed by a periodic real-time task running

on a processor. Suppose 𝑥 [𝑡] is the plant state and𝑢 [𝑡] is the control
input at time 𝑡 . When 𝑥 [𝑡 − 1] is read, a software job is released to

compute𝑢 [𝑡], which is then applied to the physical plant at time 𝑡 if

the job completes within its deadline. It is also possible that the job

will miss its deadline and not compute a control input in time. In

this case, the controller must decide on the control signal to be sent

to the system. In the literature [15] two policies have been often

considered: (1) Hold, in which the previous control signal is sent

as the current input, and (2) Zero, where the control input 0 is sent.
In this paper, we focus on theHold policy, though our methods are

compatible with Zero as well. Clearly, when deadline misses occur,

Safety-Aware Flexible Schedule Synthesis for Cyber-Physical Systems using Weakly-Hard Constraints ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

the behavior of the plant trajectory will deviate from the nominal

trajectory since the “correct” control inputs are not received.

The work in [2] proposes succinct and systematic methods of

limiting how many deadlines can be missed by control software

jobs before it is considered to be a violation. Among them, the

(𝑚
𝑘

)
model—which requires that at most𝑚 deadlines can be missed in

any 𝑘 consecutive executions of a task—has been studied in a num-

ber of settings, including schedulability analysis, formal verification,

and runtime monitoring, with [11, 20, 29] as recent examples.

Following the notation in [2], we use constraints of the type

(𝑚
𝑘

)
,

which states that at least𝑚 deadlines must be met in any 𝑘 consec-

utive invocations of the task. This is equivalent to the constraint(
𝑘−𝑚
𝑘

)
. If we represent the hit/miss patterns using a bit string,

where 0 represents a deadline miss and 1 a hit, then all hit/miss pat-

terns that comply with the constraint

(𝑚
𝑘

)
form a regular language

over the alphabet {0, 1} [30]. We denote this language as L (𝑚,𝑘) .
Plant Behaviors underWeakly-Hard Constraints.Our goal is

to synthesize weakly-hard constraints of the form

(𝑚
𝑘

)
under which

the plant behavior remains safe. To make this precise, suppose

𝜎 ∈ {0, 1}𝐻 is a sequence of length 𝐻 representing a pattern of hits

and misses. As before, 0 denotes a deadline miss and 1, a hit. Then

starting from 𝑧 [0] we can use Eq. (1) to compute the sequence of

plant states and Eq. (2) to compute control inputs (or use the last

control input if there was a deadline miss) . We denote the resulting

plant trajectory as 𝜏𝜎 . This leads to T(𝑚,𝑘) = {𝜏𝜎 | 𝜎 ∈ L (𝑚,𝑘) }.
We call the plant safe under

(𝑚
𝑘

)
if and only if T(𝑚,𝑘) ⊆ Tsafe .

3 PROBLEM STATEMENT
The problems we study in this work can now be stated as follows.

Problem 1 (Constraint Synthesis). Given a dynamical system
with the initial state 𝑧 [0] as specified above, a time horizon 𝐻 , and
the allowed maximum deviation 𝑑𝑚𝑎𝑥 from the nominal behavior,
find a set of weakly-hard constraints of the form

(𝑚
𝑘

)
such that the

plant behavior is safe under each of these constraints.

Since 𝐻 may be large, allowing all weakly-hard constraints is

not realistic. Hence, we assume that we are given a maximum

window size 𝑘max such that 𝑘max ≪ 𝐻 . Thus we are required

to synthesize all constraints of the form

(𝑚
𝑘

)
with 𝑚 ≤ 𝑘 and

𝑘 ≤ 𝑘max . Suppose we are given a set of plants, each with its own

maximum allowed deviation. For convenience, we assume they

have a common time horizon 𝐻 . Solving Problem 1 results in a set

of weakly-hard constraints for each plant. Then, we wish to also

solve the following scheduling problem.

Problem 2 (Schedule Synthesis). Given a set of 𝑁 controllers
{C𝑖 }, each with a set of weakly-hard constraints, and an implemen-
tation platform where at most 𝐽 < 𝑁 controllers can be scheduled in
each time slot, determine if a schedule exists where all the controllers
can be scheduled without violating their safety constraints over the
time horizon 𝐻 . Furthermore, synthesize a schedule if one exists.

We propose solutions to these problems in the next two sections.

Figure 1 shows how the two problems below are connected.

4 CONSTRAINT SYNTHESIS
We are seeking to synthesize all constraints of the form

(𝑚
𝑘

)
with

𝑚 < 𝑘 and 𝑘 ≤ 𝑘max under which the plant is safe. This set of con-

straints can be narrowed down based on the following observations

(see [2] for a more detailed analysis). Suppose

(𝑚
𝑗

)
and

(𝑚
𝑘

)
are two

constraints with 𝑗 < 𝑘 . Then clearly L (𝑚,𝑗) ⊂ L (𝑚,𝑘) , and hence

if the plant is safe under

(𝑚
𝑘

)
then it will also be safe under

(𝑚
𝑗

)
.

Next, suppose

(𝑚
𝑘

)
and

(
ℓ
𝑘

)
are two constraints such that𝑚 < ℓ .

Then L (ℓ,𝑘) ⊂ L (𝑚,𝑘) . Hence, if the plant is safe under
(𝑚
𝑘

)
, then

it will also be safe under

(
ℓ
𝑘

)
.

Therefore, we wish to synthesize a set of constraints:{(𝑚𝑘

𝑘

)
| 𝑘 ∈ {1, . . . , 𝑘max }

}
such that for all 𝑘 , if the plant is safe under

(
𝑚′
𝑘

)
, then𝑚′ ≥ 𝑚𝑘 .

Suppose we are trying to check if the given plant is safe under

a generic constraint

(𝑚
𝑘

)
. This entails checking if T(𝑚,𝑘) ⊆ T𝑠𝑎𝑓 𝑒 .

This is difficult to do directly since there will be exponentially

(in 𝐻) many strings to be checked. Hence we will follow a scheme

developed in [10] to check this in an overapproximate manner. In

other words, if we decide that the plant is safe under

(𝑚
𝑘

)
, this is

guaranteed to be the case but there may be a smaller value𝑚′ < 𝑚
such that the plant is also safe under

(
𝑚′
𝑘

)
. To explain this scheme,

we first define 𝑑
((𝑚

𝑘

))
= max{dis(𝜏, 𝜏nom) | 𝜏 ∈ T(𝑚,𝑘) }.

The work in [10] proposes several methods for computing an

upper bound 𝑑 for 𝑑
((𝑚

𝑘

))
. We use the BoundedTree algorithm

and make the following modification to suit our problem. The

weakly-hard constraints considered in [10] are in the form of ⟨ℓ⟩,
indicating that no more than ℓ deadline misses can occur consec-

utively in a trajectory of length 𝐻 . This can be easily modified

to work with weakly-hard constraints of the form

(𝑚
𝑘

)
. Using

the modified BoundedTree algorithm, we approximate an upper

bound 𝑑 ≥ 𝑑
((𝑚

𝑘

))
. If 𝑑 ≤ 𝑑max then we conclude that the plant is

safe under

(𝑚
𝑘

)
. Otherwise we conclude that it is not.

4.1 Constructing Safety Constraints List
We can now tackle the problem of estimating the set of constraints:{(𝑚1

1

)
,
(𝑚2

2

)
, . . . ,

(𝑚𝑘max
𝑘max

)}
such that for 𝑗 in {1, 2, . . . , 𝑘max }, if the plant is safe under

(
𝑚′
𝑗

)
then 𝑚′ ≥ 𝑚 𝑗 . We propose Algorithm 1 for computing this set

of constraints. The heart of the algorithm is the overapproxima-

tion function deviationUB, using which an upper bound is com-

puted for each candidate constraint

(𝑚 𝑗

𝑗

)
. A naïve way of building{(𝑚1

1

)
,
(𝑚2

2

)
, . . . ,

(𝑚𝑘max
𝑘max

)}
is to loop over 𝑘 from 1 to 𝑘max and𝑚

from 1 to 𝑘 . Our observations made earlier in the section suggest

two improvements: (1) if

(𝑚
𝑘

)
is unsafe, then

(𝑚
𝑘′
)
is unsafe for any

𝑘 ′ > 𝑘 ; (2) if
(𝑚
𝑘

)
is safe, then

(
𝑚′
𝑘

)
is safe for any𝑚′ > 𝑚. In both

cases no further computation is required. We also note that𝑚 = 𝑘

implies that there are no deadline misses, i.e.,

(𝑗
𝑗

)
is the nominal

behavior. Thus we can further restrict that𝑚 < 𝑘 and 𝑘 ≥ 2.

In Algorithm 1, the outer loop at Line 4 loops over 𝑘 from 2

to 𝑘max , while the inner loop at Line 5 loops over𝑚 from 1 to 𝑘 .

Note that𝑚 increases monotonically for all values of 𝑘 . For each

combination of𝑚 and 𝑘 , the deviation upper bound 𝑑 is computed

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Shengjie Xu, Bineet Ghosh, Clara Hobbs, P. S. Thiagarajan, and Samarjit Chakraborty

Algorithm 1: Constructing the set of safe constraints for a
given controller

1 function constraintSynthesis(C, 𝑑max , 𝑧 [0], 𝑘max)
input :The plant, maximum deviation 𝑑max , the initial

state 𝑧 [0], and maximum window size 𝑘max
output :List of weakly-hard constraints that satisfies

safety requirement

2 result← {} ;
3 𝑚 ← 1 ;

4 for 𝑘 ← 2 to 𝑘max do
5 while𝑚 < 𝑘 do
6 𝑑 ← deviationUB(𝑚,𝑘,C, 𝑧 [0]) ;
7 if 𝑑 ≤ 𝑑max then
8 result← append(result,

(𝑚
𝑘

)
) ;

9 break

10 𝑚 ←𝑚 + 1 ;

11 return result ;

for

(𝑚
𝑘

)
(Line 6) and compared with maximum deviation 𝑑max

(Line 7). If 𝑑 ≤ 𝑑max , then
(𝑚
𝑘

)
is added to results and 𝑘 is in-

cremented (Line 8); otherwise,𝑚 is incremented (Line 10). Some

examples are shown in Table 1 in Section 6. For now, if we focus on

just the first model, namely, the RC network, 𝑘𝑚𝑎𝑥 for this system

is 6. ✓ denotes a safe constraint (for instance,

(
4

2

)
) and × an unsafe

constraint (for instance,

(
5

2

)
).

5 SCHEDULE SYNTHESIS
As noted earlier, a weakly-hard constraint can be associated with

a regular language over {0, 1} where the strings in this language

are hit/miss patterns that satisfy this constraint. Clearly, the set

of safety constraints we have synthesized for a plant can be rep-

resented as regular language which is the union of the regular

languages representing the constraints. In this section, we first

build an automaton-based representation A𝑖 of the weakly-hard
constraints for each controller C𝑖 . We then construct a scheduler

automaton A𝑆 to check for the existence of safe schedules and

generate one such schedule if they exist.

5.1 Controller Automaton
The automaton A(𝑚,𝑘) , accepting the language L (𝑚,𝑘) , will be of
the form ⟨𝐿, Σ,𝑇 , 𝐿𝑓 , ℓ0⟩ where:
𝐿 set of locations, 𝐿 = {0, 1}𝑘 ;
Σ input alphabet, Σ = {0, 1};
𝑇 transition function, 𝑇 : 𝐿 × Σ→ 𝐿;

𝐿𝑓 accepting locations of the automaton, 𝐿𝑓 ⊂ 𝐿;
ℓ0 initial location of the automaton with ℓ0 = {1}𝑘 .

The locations of the automaton ℓ ∈ {0, 1}𝑘 are strings repre-

senting the sliding window of size 𝑘 over the hit/miss patterns,

corresponding to the 𝑘 consecutive invocations of the software

task. The starting location ℓ0 = {1}𝑘 assumes that there has been

no deadline misses at system start. Let countOnes(𝑠) be a function
that returns the number of 1s in a string 𝑠 over {0, 1}. The accepting

11 01

10 00

1

0

1

0

0

1

1

0

Figure 2: The automaton modelling the weakly-hard constraint
(
1

2

)
.

locations 𝐿𝑓 are the ones satisfying the weakly-hard constraint for

that specific window, i.e., ℓ ∈ 𝐿𝑓 if and only if countOnes(ℓ) ≥ 𝑚.

The transition function 𝑇 is defined in the expected way. As an

example, the automaton corresponding to the the weakly-hard

constrain of

(
1

2

)
is shown in Fig. 2.

For each controller C𝑖 , a single A𝑖 can be constructed by tak-

ing the union of all languages corresponding to weakly-hard safe

constraints that have been synthesized for that controller (as per

Problem 1). We assume that we have 𝑁 plants and controllers. Thus

we will have a set of automata {A𝑖 }. These automata will then be

used to construct the scheduler automaton. Our construction will

ensure that a schedule exists if and only if the language accepted

by the scheduler automaton is non-empty.

5.2 Scheduler Automaton
Our goal is to schedule the jobs of each controller’s task. We as-

sume that the processor makes available 𝐻 time slots one after the

another and in each slot at most 𝐽 jobs can run concurrently. As

a first attempt at scheduling tasks with weakly-hard constraints,

we assume a restricted setting where all the controllers have the

same period and the deadline is its period for each controller. Thus

if the job 𝑡𝑠𝑘
𝑗
𝑖
, namely the 𝑗-th job belonging to the task 𝑡𝑠𝑘𝑖 is

not scheduled in the 𝑗-th slot then it suffer a deadline miss. On the

other hand, if it is scheduled then it will meet its deadline. Based

on this setting, we define the scheduler automaton as follows.

Definition 1. A scheduler automaton A𝑆 for a set of 𝑁 con-
trollers whose constraints are represented by the automata of the form
A𝑖 = ⟨𝐿𝑖 , Σ,𝑇 𝑖 , 𝐿𝑖𝑓 , ℓ

𝑖
0
⟩, where at most 𝐽 controllers can be scheduled

in each time slot, is defined as an automaton ⟨𝐿𝑆 , Σ𝑆 ,𝑇𝑆 , 𝐿𝑆
𝑓
, ℓ𝑆
0
⟩:

𝐿𝑆 set of locations, 𝐿𝑆 =
∏

𝑖 𝐿
𝑖 ;

Σ𝑆 input alphabet, Σ𝑆 ⊂ {0, 1}𝑁 . A sequence 𝜎 ∈ {0, 1}𝑁 is in Σ𝑆

if and only if countOnes(𝜎) ≤ 𝐽 ;
𝑇𝑆 transition function, 𝑇𝑆 (ℓ, 𝜎) = ∏

𝑖 𝑇
𝑖 (ℓ𝑖 , 𝜎𝑖);

𝐿𝑆
𝑓

accepting locations of the automaton, 𝐿𝑆
𝑓
=
∏

𝑖 𝐿
𝑖
𝑓
;

ℓ𝑆
0

initial location of the automaton, ℓ𝑆
0
=
∏

𝑖 ℓ
𝑖
0
.

Specifically, the new set of locations 𝐿𝑆 is a Cartesian product of

the controller automaton locations: 𝐿𝑆 = 𝐿1 × 𝐿2 × · · · × 𝐿𝑁 , and

each location ℓ ∈ 𝐿𝑆 is a tuple of individual locations from each

controller: ℓ = ⟨ℓ1, ℓ2, . . . , ℓ𝑁 ⟩. The set of actions Σ𝑆 ⊂ {0, 1}𝑁
now captures hits and misses for all controllers. Below, we use

superscripts ℓ𝑖 to denote 𝑖-th element of ℓ , and 𝜎𝑖 to denote the

𝑖-th position of 𝜎 . The 𝑖-th controller is scheduled when 𝜎𝑖 = 1.

Since we can only schedule 𝐽 jobs in each slot, an action 𝜎 is valid

Safety-Aware Flexible Schedule Synthesis for Cyber-Physical Systems using Weakly-Hard Constraints ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

if and only if countOnes(𝜎) ≤ 𝐽 . For example, 𝑁 = 3, 𝐽 = 1 results

in Σ𝑆 = {000, 001, 010, 100}. 𝜎 = 010 indicates that only the sec-

ond controller is scheduled. The transition function 𝑇𝑆 returns the

product of individual transition functions

∏
𝑖 𝑇

𝑖
. Let 𝜎 ∈ Σ𝑆 be a

valid action for the scheduler automaton A𝑆 , then the transition

function 𝑇𝑆 becomes:

𝑇𝑆 (ℓ, 𝜎) = ⟨𝑇 1 (ℓ1, 𝜎1),𝑇 2 (ℓ2, 𝜎2), . . . ,𝑇𝑁 (ℓ𝑁 , 𝜎𝑁)⟩.
The set of accepting locations 𝐿𝑓 is also a Cartesian product of

the individual accepting locations. A location ℓ ∈ 𝐿𝑆
𝑓
if and only if

ℓ𝑖 ∈ 𝐿𝑖
𝑓
for all 𝑖 ∈ [1, 𝑁]. Intuitively, this means that the schedule is

valid only if all the controllers operate within their safety margin;

if any of the controller automaton A𝑖 transition to a non-accepting

(unsafe) location, the scheduler automaton will also transition to a

non-accepting location. Once we have constructed the scheduler

automaton, we can check for the existence of schedules by running

emptiness check on the scheduler automaton.

6 EXPERIMENTAL RESULTS
We have implemented the constraint synthesis and scheduler syn-

thesis techniques using Julia. We used the 5 systems described in

Section 6.1 for our experiments. Given a maximum allowed devia-

tion for each system, we used our constraint synthesis technique to

compute a set of safe weakly-hard constraints for each controller.

We then checked, using our scheduler synthesis technique, if the

corresponding controllers with their synthesized constraints could

be scheduled on a shared platform. In doing so, we assumed that

only two jobs can be scheduled in any single slot (i.e., 𝐽 = 2).

6.1 Plant Models
We note that the controllers of all the five systems, described in the

rest of the section, have the same period, namely, 𝑝 = 20𝑚𝑠

6.1.1 RC Network (RC). Our first model is a resistor-capacitor

network [4] with the following model.

𝑥 [𝑡 + 1] =
[
0.8870 0.01871

0.003743 0.9861

]
𝑥 [𝑡] +

[
0.09433

0.01012

]
𝑢 [𝑡]

6.1.2 F1Tenth Car (F1). Our second model is the linearized motion

of an F1Tenth model car [18]:

𝑥 [𝑡 + 1] =
[
1 0.13

0 1

]
𝑥 [𝑡] +

[
0.02559

0.3937

]
𝑢 [𝑡]

Our next three plant models are selected from [23] and represent

components in the automotive domain.

6.1.3 DC Motor (DC). Our third model is the speed control for DC

motor adapted from [17]:

𝑥 [𝑡 + 1] =
[

0.8187 0.01776

−0.0003551 0.9608

]
𝑥 [𝑡] +

[
0.0003696

0.03921

]
𝑢 [𝑡]

6.1.4 Car Suspension (CS). Our fourth model is a suspension sys-

tem adapted from [19]:

𝑥 [𝑡+1] =


0.9988 0.01937 0.000923 0.000549

−0.1111 0.9432 0.06715 0.04547

0.01082 0.00549 0.978 0.01165

0.8878 0.4547 −1.82 0.3012

 𝑥 [𝑡]+

0.0113

0.9534

0.2441

−13.04

 𝑢 [𝑡]

Table 1: Synthesized constraints for the 5 controllers fromSection 6.1.

Model Window
Size (𝑘)

Minimum Hits (𝑚)
1 2 3 4 5

RC network

2 ✓ — — — —

3 ✓ ✓ — — —

4 × ✓ ✓ — —

5 × × ✓ ✓ —

6 × × × ✓ ✓

F1 Tenth

2 ✓ — — — —

3 × ✓ — — —

4 × × ✓ — —

5 × × × ✓ —

6 × × × × ✓

DC Motor

2 ✓ — — — —

3 ✓ ✓ — — —

4 ✓ ✓ ✓ — —

5 × ✓ ✓ ✓ —

6 × × ✓ ✓ ✓

Car Suspension

2 ✓ — — — —

3 × ✓ — — —

4 × ✓ ✓ — —

5 × ✓ ✓ ✓ —

6 × × ✓ ✓ ✓

Cruise Control

2 ✓ — — — —

3 ✓ ✓ — — —

4 ✓ ✓ ✓ — —

5 ✓ ✓ ✓ ✓ —

6 × ✓ ✓ ✓ ✓

6.1.5 Cruise Control (CC). Our final model is a cruise control sys-

tem adapted from [24]:

𝑥 [𝑡] =


1.0 0.01999 0.0001996

−0.001207 0.9989 0.01995

−0.1206 −0.1066 0.9942

 𝑥 [𝑡]+

3.298 × 10−6
0.0004945

0.0494

 𝑢 [𝑡]
Each plant model was discretized with a common period of

𝑝 = 20ms. Controllers were then designed for the discretized state-

space models with a one-period delay.

6.2 Safe Schedule Synthesis
We first synthesized the set of safe weakly-hard constraints for

each controller. Then, we checked for a schedule that respects the

constraints for all controllers. We exhibit one such schedule below.

Constraint Synthesis. For each controller, we ran the method

outlined in Section 4, with time horizon 𝐻 = 100. The maximum

window size 𝑘max was set to be 6 for all the controllers. The results

are presented in Table 1, where we also report the maximum devia-

tion 𝑑𝑚𝑎𝑥 used to synthesize the constraints, for each controller.

Schedule Synthesis. We next used the controllers of the five

systems and attempted to synthesize a schedule (with 𝐽 = 2). The

results are presented in Table 2, showing an execution sequence of

the scheduler automaton. As shown, we have successfully found a

schedule for the five controllers, where each controller satisfies its

corresponding safety constraint. As shown in Table 2, one example

of a valid schedule is as follows: From 𝑡 = 1 to 𝑡 = 19, the sched-

ule is the corresponding action 𝜎 [𝑡], where the 𝑖-th controller is

scheduled at time step 𝑡 if 𝜎 [𝑡]𝑖 = 1. From 𝑡 = 20 to 𝑡 = 100, the

schedule is repeated from 𝑡 = 6 to 𝑡 = 19, viz., the schedule at time

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Shengjie Xu, Bineet Ghosh, Clara Hobbs, P. S. Thiagarajan, and Samarjit Chakraborty

Table 2: Synthesized schedule for the five controllers outlined in Section 6.1. A 1 at the 𝑖-th position of action 𝜎 [𝑡] indicates that the 𝑖-th
controller is scheduled at time step 𝑡 .

Step (t) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Action (𝜎 [𝑡]) 01010 10100 01001 10010 01100 10010 01100 10001 01010 10100 01010 10001 01100 10010 01010 10100 01001 10010 01100 (same as 𝜎 [6])

𝑡 ∈ [20, 100] can be analytically given as 𝜎 [((𝑡 − 20) mod 14) + 6].
We note that this is not the only valid schedule for this particular

set of controllers. The accepting runs of the scheduler automaton

represent the set of all the valid schedules.

Interestingly, this case study highlights that when weakly-hard

constraints are involved, traditional expectations involving uti-

lization, scheduling policies and schedulability do not apply, even

in our simple setting. To illustrate this, assume that each con-

troller has just one weakly-hard constraint. Then, it is not the

case that the schedulability of {C𝑖 } is implied by the utilization

ratio satisfying

∑
C∈{C𝑖 } U(C) < 𝐽 , where U(C) is defined as

𝑚
𝑘

for the controller with constraint

(𝑚
𝑘

)
. Consider five controllers

each with one weakly-hard constraint:

(
1

2

)
,
(
1

2

)
,
(
1

3

)
,
(
2

5

)
,
(
1

4

)
. Here∑

C∈{C𝑖 } U(C) =
1

2
+ 1

2
+ 1

3
+ 2

5
+ 1

4
= 119

60
< 2. However, it is easy

to check this set of tasks is not schedulable. On the other hand, one

may expect that if a schedule S exists, then the earliest deadline first
(EDF) scheduler (where a deadline refers to the maximum number

of misses until the constraint is violated) will produce a valid sched-

ule. However, considering the constraints

(
1

2

)
,
(
1

2

)
,
(
1

4

)
,
(
3

6

)
,
(
1

5

)
,

it is easy to check that scheduling under EDF will fail, but our

scheduler synthesis method produces a valid schedule.

7 CONCLUDING REMARKS
In this work, we have linked the safety properties of control sys-

tems to the schedules of their controllers implemented on a shared

platform. Specifically, we consider safe behaviors of a system to

be those in which the system deviates from its nominal behavior

(induced by its control software always delivering its results on

time) at most by a given bound. We then automatically synthesize

a schedule for the controllers of a set of such systems so their be-

haviors are guaranteed to be safe. The bridge connecting the safe

behaviors and schedules are weakly-hard constraints, which spec-

ify the pattern of deadline misses that a system can tolerate while

maintaining the safety of its behaviors. Concretely, we first syn-

thesize a set of weakly-hard constraints for each controller under

which the behavior of the system is guaranteed to remain safe. We

do so in a safe, overapproximate manner guaranteeing safety of the

plant, since exactly determining the constraints is computationally

infeasible. Then given a set of weakly-hard constraints for each

controller, we synthesize a schedule for a set of controllers on a

shared platform, so long as such a schedule exists.

An important observation here is that scheduling under weakly-

hard constraints is inherently challenging and does not seem to be

amenable to analyses developed for standard scheduling policies,

like earliest deadline first. As our examples have shown, even in

the simple setting that we considered, traditional ideas based on

utility ratios and the earliest deadline first policy do not work. It

will be interesting to study this issue systematically in the future. In

addition, we have only considered a safety property of plants here.

For autonomous systems, one often additionally requires liveness
properties, such as, “the robot should visit each designated station at

least once (while avoiding obstacles) when it moves from the starting
point to the destination.” It will therefore be fruitful to extend the

our framework to such richer settings.

Acknowledgements:We thank the anonymous reviewers for their

useful feedback that helped in improving the paper.

REFERENCES
[1] P. Axer, et al. 2014. Building Timing Predictable Embedded Systems. ACM Trans.

Embed. Comput. Syst. (2014).
[2] G. Bernat, et al. 2001. Weakly hard real-time systems. IEEE Trans. Comput. 50, 4

(2001).

[3] W. Chang and S. Chakraborty. 2016. Resource-aware Automotive Control Systems

Design: A Cyber-Physical Systems Approach. Found. Trends Electron. Des. Autom.
10, 4 (2016).

[4] R. A. Gabel and R. A. Roberts. 1980. Signals and Linear Systems (second ed.). John
Wiley & Sons.

[5] B. Ghosh, et al. 2022. Statistical Hypothesis Testing of Controller Implementations

Under Timing Uncertainties. In RTCSA.
[6] D. Goswami, et al. 2011. Re-engineering cyber-physical control applications for

hybrid communication protocols. In DATE.
[7] D. Goswami, et al. 2014. Relaxing Signal Delay Constraints in Distributed Em-

bedded Controllers. IEEE Trans. Control. Syst. Technol. 22, 6 (2014).
[8] M. Hamdaoui and P. Ramanathan. 1995. A dynamic priority assignment technique

for streams with (m, k)-firm deadlines. IEEE Trans. Comput. 44, 12 (1995).
[9] Z. Hammadeh, et al. 2017. Bounding Deadline Misses in Weakly-Hard Real-Time

Systems with Task Dependencies. In DATE.
[10] C. Hobbs, et al. 2022. Safety Analysis of Embedded Controllers under Implemen-

tation Platform Timing Uncertainties. In EMSOFT.
[11] C. Huang, et al. 2019. Formal Verification of Weakly-Hard Systems. In HSCC.
[12] L. Ju, et al. 2008. Performance debugging of Esterel specifications. In CODES+ISSS.
[13] S. Linsenmayer and F. Allgöwer. 2017. Stabilization of networked control systems

with weakly hard real-time dropout description. In CDC.
[14] M. Lukasiewycz, et al. 2013. System architecture and software design for electric

vehicles. In DAC.
[15] M. Maggio, et al. 2020. Control-System Stability Under Consecutive Deadline

Misses Constraints. In ECRTS.
[16] A. Masrur, et al. 2010. VM-Based Real-Time Services for Automotive Control

Applications. In RTCSA.
[17] W. C. Messner and D. M. Tilbury. 1998. Control tutorials for MATLAB and

Simulink: a web-based approach. http://ctms.engin.umich.edu/CTMS

[18] M. O’Kelly, et al. 2020. F1tenth: An open-source evaluation environment for

continuous control and reinforcement learning. Proceedings of Machine Learning
Research 123 (2020).

[19] K. Osman, et al. 2009. Modelling and controller design for a cruise control system.

CSPA (2009).

[20] P. Pazzaglia, et al. 2021. Adaptive Design of Real-Time Control Systems subject

to Sporadic Overruns. In DATE.
[21] P. Pazzaglia, et al. 2019. DMAC: Deadline-Miss-Aware Control. In ECRTS.
[22] P. Pazzaglia, et al. 2018. Beyond the Weakly Hard Model: Measuring the Perfor-

mance Cost of Deadline Misses. In ECRTS.
[23] D. Roy, et al. 2016. Multi-Objective Co-Optimization of FlexRay-Based Distributed

Control Systems. In RTAS.
[24] R. Schneider, et al. 2011. Constraint-Driven Synthesis and Tool-Support for

FlexRay-Based Automotive Control Systems. In CODES+ISSS.
[25] T. Sehnke, et al. 2017. Temporal properties in automotive control software. In

RTNS.
[26] D. Soudbakhsh, et al. 2018. Co-Design of Arbitrated Network Control Systems

With Overrun Strategies. IEEE Trans. Control. Netw. Syst. 5, 1 (2018).
[27] Y. Sun and M. D. Natale. 2017. Weakly Hard Schedulability Analysis for Fixed

Priority Scheduling of Periodic Real-Time Tasks. ACM Trans. Embed. Comput.
Syst. 16, 5s, Article 171 (2017).

[28] E. P. van Horssen, et al. 2016. Performance analysis and controller improvement

for linear systems with (m, k)-firm data losses. In ECC.
[29] G. von der Brüggen, et al. 2018. Efficiently approximating the probability of

deadline misses in real-time systems. In ECRTS.
[30] N. Vreman, et al. 2022. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Con-

straints. In RTAS.

http://ctms.engin.umich.edu/CTMS

	Abstract
	1 Introduction
	2 System Modelling
	2.1 The State-Space Model
	2.2 Safe Behaviors
	2.3 Weakly-Hard Constraints

	3 Problem Statement
	4 Constraint Synthesis
	4.1 Constructing Safety Constraints List

	5 Schedule Synthesis
	5.1 Controller Automaton
	5.2 Scheduler Automaton

	6 Experimental Results
	6.1 Plant Models
	6.2 Safe Schedule Synthesis

	7 Concluding Remarks
	References

